
1

Automata, Computability, and
Formal Language

CS 4410

Dr. Xuejun Liang

2

Chapter 7

Pushdown Automata

1. Nondeterministic Pushdown Automata

• Definition of a Pushdown Automata

• The Language Accepted by a Pushdown Automaton

2. Pushdown Automata and Context-Free Languages

• Pushdown Automata for Context-Free Languages

• Context-Free Grammar for Pushdown Automata

3. Deterministic Pushdown Automata and

Deterministic Context-Free Languages

4. Grammars for Deterministic Context-Free

Languages*

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Describe the components of a nondeterministic pushdown
automaton

• State whether an input string is accepted by a nondeterministic
pushdown automaton

• Construct a pushdown automaton to accept a specific language

• Given a context-free grammar in Greibach normal form,
construct the corresponding pushdown automaton

• Describe the differences between deterministic and
nondeterministic pushdown automata

• Describe the differences between deterministic and general
context-free languages

Nondeterministic Pushdown Automata

• A pushdown automaton is a model of computation designed
to process context-free languages

• Pushdown automata use a stack as storage mechanism

5

Nondeterministic Pushdown Automata

Definition 7.1: A nondeterministic pushdown accepter (npda) is defined

by the sep-tuple M = (Q, , , , q0, z, F)

where

Q is a finite set of internal states of the control unit,

 is the input alphabet,

 is a finite set of symbols called the stack alphabet,

: Q({})→ finite subsets of Q* is the transition function,

q0  Q is the initial state of the control unit

z   is the stack start symbol

F  Q is the set of final states

Input to the transition function δ consists of a triplet:

A state, input symbol (or ), and the symbol at the top of stack

Output of δ consists of a set of pairs:

A new state, and new top of stack

Note: Transitions can be used to model common stack operations

Sample NPDA Transition

• Example 7.1 presents the sample transition rule:

δ(q1, a, b) = {(q2, cd), (q3, )}

• According to this rule, when the control unit is in state q1, the
input symbol is a, and the top of the stack is b, two moves are
possible:
• New state is q2 and the symbols cd replace b on the stack

• New state is q3 and b is simply removed from the stack

7

An Example NPDA

Example 7.2: Q={q0, q1, q2, q3}, ={a, b}, ={0, 1}, z=0, F={q3}

(q0, a, 0)={(q1, 10), (q3, )},

(q0, , 0)={(q3, )},

(q1, a, 1)={(q1,11)},

(q1, b, 1)={(q2, )},

(q2, b, 1)={(q2, )},

(q2, , 0)={(q3, )}

Transition Graphs

• In the transition graph for a npda, each edge is labeled with
the input symbol, the stack top, and the string that replaces
the top of the stack

• The graph below represents the npda in Example 7.2:

(q0, a, 0)={(q1, 10), (q3, )},

(q0, , 0)={(q3, )},

(q1, a, 1)={(q1,11)},

(q1, b, 1)={(q2, )},

(q2, b, 1)={(q2, )},

(q2, , 0)={(q3, )}

9

Language accepted by a Pushdown Automata

Definition 7.2: Let M=(Q, , , , q0, z, F) be a nondeterministic pushdown

automaton. The language accepted by M is the set

In words, the language accepted by M is the set of all strings that can put

M into a final state at the end of the string. The final stack content u is

irrelevant to this definition of acceptance.

},),,,(),,(:{)(0

** = uFpupzwqwML 
*

M

An instantaneous description is a triplet (q, w, u), where

q: current state, w: unread part of input string, and u: stack content

(with the top as the leftmost symbol)

A move from (q1, aw, bx) to (q2, w, yx) denoted by

(q1, aw, bx) |− (q2, w, yx)

is possible, if and only if (q2, y)  (q1, a, b).

10

Language accepted by a Pushdown Automata

Example 7.4: Construct an npda for the language

L={ w  {a, b}* : na(w) = nb(w)}
Show the ndpa moves in

processing the string baab

Idea
z is on stack if #a’s = #b’s
#0’s = #a’s - #b’s if more a’s
#1’s = #b’s - #a’s if more b’s

11

Example 7.5: Construct an npda for the language

L={ wwR : w  {a, b}+ }
Show the ndpa moves in

processing the string abba

12

Pushdown Automata for
Context-Free Languages

Theorem 7.1: For every context-free language L, there exists an npda M

such that L=L(M). (Assume the L is generated by context-free grammar G.)

Two Steps to build such an npda

(1) Transform productions of G into Greibach normal form

(2) Build an npda from the productions in Greibach normal form

Details of step 2:

Q = { q0, q1, qf },  = all terminal symbols, and  = all variables,

The moves (transitions) contain the following:

1. (q0, , z) |− (q1, , Sz)

2. For every production of the form A → aX, a move

(q1, a, A) |− (q1, , X)

3. (q1, , z) |− (qf, , z)

13

Pushdown Automata for
Context-Free Languages

Example 7.6: Construct an npda that accepts the language generated

by grammar with productions

S → aSbb|a

production move

(q0, , z) |− (q1, , Sz)

S → aSA (q1, a, S) |− (q1, , SA)

S → a (q1, a, S) |− (q1, , )

A → bB (q1, b, A) |− (q1, , B)

B → b (q1, b, B) |− (q1, , )

(q1, , z) |− (qf, , z)

14

Example 7.7: Construct an npda that accepts the

language generated by grammar with productions

S → aA,

A → aABC|bB|a,

B → b,

C → c.Show the ndpa moves in processing the string aaabc

and corresponding leftmost derivation of the grammar

15

Context-Free Grammars for
Pushdown Automata

Two properties of an npda

1. Single final state qf, which is entered if and only if the stack is empty

2. All transitions must have the form

(qi, a, A) = {c1, c2, .., cn},

where

cj = (qj, ) ((qi, a, A) |− (qj, , )) or

cj = (qj, BC) ((qi, a, A) |− (qj, , BC))

Build the grammar from an npda with the two properties

1. Variable: (qiAqj) and Staring variable: (q0zqf)

2. Production: (qiAqj) → a if (qi, a, A) |− (qj, , )

ql, qk Q, (qiAqk) → a (qjBql) (qlCqk) if (qi, a, A) |− (qj, , BC)

Theorem 7.2: If L=L(M) for some npda M, then L is a context-free language.

16

Deterministic Pushdown Automata and
Deterministic Context-Free Languages

Definition 7.3: A deterministic pushdown accepter (dpda) is a

pushdown automata as defined in Definition 7.1, subject to the

restrictions that, for every q  Q, a  {} and b  ,

1. (q, a, b) contains at most one element,

2. If (q, , b) is not empty, then (q, c, b) must be empty for

every c  .

Definition 7.4: A language L is said to be a deterministic context-free

language if and only if there exists a dpda such that L = L(M).

In contrast to finite automata, deterministic and non-deterministic

pushdown automata are not equivalent.

17

Deterministic Pushdown Automata and
Deterministic Context-Free Languages

Examples 7.10: (1) L={anbn : n0} is deterministic context-free language.

(2) L={wwR: w  {a, b}+} is not deterministic.

The dpda has
States: Q = {q0, q1, q2} and q0 as its initial and final state
Input alphabet: { a, b }
Stack alphabet { 0, 1 } and z = 0,

The transition rules are

δ(q0, a, 0) = { (q1, 10) }

δ(q1, a, 1) = { (q1, 11) }

δ(q1, b, 1) = { (q2, ) }

δ(q2, b, 1) = { (q2, ) }

δ(q2, , 0) = { (q0, ) }

