CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 6

Simplification of Context-Free Grammars and Normal Forms

- 1. Methods for Transforming Grammars
 - A Useful Substitution Rule
 - Removing Useless Productions
 - Removing λ -Productions
 - Removing Unit-Productions
- 2. Two Important Normal Forms
 - Chomsky Normal Form
 - Greibach Normal Form
- 3. A Membership Algorithm for Context-Free Grammars*

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Simplify a context-free grammar by removing useless productions
- Simplify a context-free grammar by removing λ -productions
- Simplify a context-free grammar by removing unit-productions
- Determine whether or not a context-free grammar is in Chomsky normal form
- Transform a context-free grammar into an equivalent grammar in Chomsky normal form
- Determine whether or not a context-free grammar is in Greibach normal form
- Transform a context-free grammar into an equivalent grammar in Greibach normal form

A Useful Substitution Rule

Theorem 6.1: Let G=(V, T, S, P) be a context-free grammar. Suppose that P contains a production of the form

$$A \rightarrow x_1 B x_2$$
.

Assume that A and B are different variables and that

$$B \rightarrow y_1 \mid y_2 \mid ... \mid y_n$$

is the set of all productions in P which have B as the left side. Let

 $\widehat{G} = (V, T, S, \widehat{P})$ be the grammar in which \widehat{P} is constructed by deleting

$$A \rightarrow x_1 B x_2$$

from P, and adding to it

$$A \rightarrow x_1 y_1 x_2 | x_1 y_2 x_2 | \dots | x_1 y_n x_2$$

Then

$$L(\widehat{G}) = L(G)$$

A Useful Substitution Rule

Theorem 6.1:

Example 6.1: Consider G=({A, B}, {a, b, c}, A, P) with productions
$$A \rightarrow a \mid aaA \mid abBc$$
, $B \rightarrow abbA \mid b$

Substitute the variable B.

Removing Useless Productions

Definition 6.1: Let G=(V, T, S, P) be a context-free grammar. A variable $A \in V$ is said to be useful if and only if there is at least one $w \in L(G)$ such that

$$S \stackrel{*}{=} xAy \stackrel{*}{=} w, \tag{6.2}$$

with $x, y \in (V \cup T)^*$. In words, a variable is useful if and only if it occurs in at least one derivation. A variable that is not useful is called useless. A production is useless if it involves any useless variable.

Example 6.2: Eliminate useless variables and productions

$$S \rightarrow A$$
,
 $A \rightarrow aA \mid \lambda$,
 $B \rightarrow bA$.

Example 6.3: Eliminate useless variables and productions

$$S \rightarrow aS | A | C$$
,
 $A \rightarrow a$,
 $B \rightarrow aa$,
 $C \rightarrow aCb$.

Removing Useless Productions

Theorem 6.2: Let G=(V, T, S, P) be a context-free grammar. Then there exists an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ that does not contain any useless variables and productions.

Let G=(V, T, S, P) be a context-free grammar. Compute $V_1=\{A\in V: A\stackrel{*}{=}> w\in T^*\}.$

- 1. Set V_1 to \emptyset .
- 2. Repeat the following step until no more variables are added to V_1 . For every $A \in V$ for which P has production of the form $A \rightarrow x_1 x_2 ... x_n$ with all x_i in $V_1 \cup T$ Add A to V_1 .

Removing Useless Productions

Theorem 6.2: Let G=(V, T, S, P) be a context-free grammar. Then there exists an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ that does not contain any useless variables and productions.

Let G=(V, T, S, P) be a context-free grammar. Compute $V_2=\{A \in V : S \stackrel{*}{=}> xAy \in (V \cup T)^*\}.$

- 1. Set $V_2 = \{S\}$.
- 2. Repeat the following step until no more variables are added to V_2 . For every $B \in V$ for which P has production of the form $A \rightarrow xBy$ with $x, y \in (T \cup V)^*$ and $A \in V_2$ Add B to V_2 .

Definition 6.2: Any production of a context-free grammar of the form $A \rightarrow \lambda$ is called a λ -production. Any variable A for which the derivation $A \stackrel{*}{=} > \lambda$ is possible is called nullable.

Example 6.4: Eliminate λ -productions The language L={ a^nb^n : $n\geq 1$ }

$$S \to aS_1b,$$

$$S_1 \to aS_1b \mid \lambda$$

$$S \to aS_1b \mid ab,$$

$$S_1 \to aS_1b \mid ab$$

Theorem 6.3: Let G be a context-free grammar with λ not in L(G). Then there exists an equivalent grammar \hat{G} having no λ -productions.

Step 1: Let G=(V, T, S, P) be a context-free grammar. Compute all nullable variables

$$V_N = \{A \in V : A \stackrel{*}{=} > \lambda\}.$$

- 1) For all production $A \rightarrow \lambda$, put A in V_N .
- 2) Repeat the following step until no further variables are added to V_N . For all productions

$$B \rightarrow A_1 A_2 ... A_n$$
,
where $A_1, A_2, ..., A_n$ are in V_N , put B into V_N .

Step 2: Remove all λ -productions and add productions by Replacing all nullable variables with λ in all possible combinations

Theorem 6.3: Let G be a context-free grammar with λ not in L(G). Then there exists an equivalent grammar \hat{G} having no λ -productions.

Step 1: Let G=(V, T, S, P) be a context-free grammar. Compute all nullable variables

$$V_N = \{A \in V : A \stackrel{*}{=} > \lambda\}.$$

Step 2: Remove all λ -productions and add productions by Replacing all nullable variables with λ in all possible combinations

Examples: Assume B and $C \in V_N$. Then

- 1) For A \rightarrow ByC, adding productions A \rightarrow y | yC | By
- 2) For A \rightarrow BC, adding productions A \rightarrow C | B

Example 6.5: Eliminate λ -productions

$$S \rightarrow ABaC$$
, $S \rightarrow ABaC \mid BaC \mid AaC$
 $A \rightarrow BC$, $\mid ABa \mid aC \mid Aa \mid Ba \mid a$, $A \rightarrow B \mid C \mid BC$, $B \rightarrow b$, $C \rightarrow D \mid \lambda$, $C \rightarrow D$, $C \rightarrow D$, $D \rightarrow d$.

Removing Unit-Productions

Definition 6.3: Any production of a context-free grammar of the form $A \rightarrow B$ where $A, B \in V$ is called a unit-production.

Theorem 6.4: Let G=(V, T, S, P) be any context-free grammar without λ -productions. Then there exists a context-free grammar $\widehat{G} = (\widehat{V}, \widehat{T}, S, \widehat{P})$ that does not have any unit-productions and that is equivalent to G.

Steps: 1. Put all non-unit productions of P into \widehat{P}

2. For A
$$\stackrel{*}{=}$$
 B, add to \widehat{P}

$$A \rightarrow y_1 \mid y_2 \mid ... \mid y_n,$$
where B $\rightarrow y_1 \mid y_2 \mid ... \mid y_n$ in \widehat{P}

$$S \rightarrow a \mid bc \mid bb \mid Aa,$$

$$A \rightarrow a \mid bb \mid bc,$$

$$B \rightarrow a \mid bb \mid bc,$$

Example 6.6: Eliminate unit-productions

$$S \rightarrow Aa \mid B$$
,
 $B \rightarrow A \mid bb$,
 $A \rightarrow a \mid bc \mid B$

Removing λ-Productions Removing Unit-Productions Removing Useless Productions

Theorem 6.5: Let L be a context-free language that does not contain λ . Then there exists a context-free grammar that generate L and that does not have any useless productions, λ -productions, or unit-productions.

- Steps: 1. Remove λ -productions
 - 2. Remove unit-productions
 - 3. Remove useless productions

Chomsky Normal Form

Definition 6.4: A context-free grammar is in Chomsky normal form if all productions are of form

$$A \rightarrow BC$$
, or

$$A \rightarrow a$$

where A, B, C are in V, and a is in T.

Example 6.7: In Chomsky normal form

$$S \rightarrow AS$$
,

$$A \rightarrow SA \mid b$$

Not in Chomsky normal form

$$S \rightarrow AS \mid AAS$$
,

$$A \rightarrow SA \mid aa$$

Chomsky Normal Form

Theorem 6.6: Any context-free grammar G=(V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G}=(\hat{V},\hat{T},S,\hat{P})$ in Chomsky normal form.

Example 6.8: $S \rightarrow ABa$,

Convert the grammar to $A \rightarrow aab$

Chomsky normal form $B \to Ac$

Chomsky Normal Form

Theorem 6.6: Any context-free grammar G=(V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G}=(\hat{V},\hat{T},S,\hat{P})$ in Chomsky normal form.

Example 6.8: $S \rightarrow ABa$,

Convert the grammar to $A \rightarrow aab$

Chomsky normal form $B \to Ac$

Greibach Normal Form

Definition 6.5: A context-free grammar is in Greibach normal form if all productions are of form

$$A \rightarrow ax$$

where a is in T and x is in V^* .

Example 6.9: In Greibach normal form

$$S \rightarrow aAB \mid bBB \mid bB$$
,

$$A \rightarrow aA \mid bB \mid b$$
,

$$B \rightarrow b$$

Not in Greibach normal form

$$S \to AB$$
,

$$A \rightarrow aA \mid bB \mid b$$
,

$$B \rightarrow b$$

Greibach Normal Form

Theorem 6.7: Any context-free grammar G=(V, T, S, P) with $\lambda \notin L(G)$ has an equivalent grammar $\hat{G} = (\hat{V}, \hat{T}, S, \hat{P})$ in Greibach normal form.

Example 6.10: Convert the grammar $S \rightarrow abSb \mid aa$ into Greibach normal form