CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 4
 Properties of Regular Languages

1. Closure Properties of Regular Languages

- Closure under Simple Set Operations
- Closure under Other Operations

2. Elementary Questions about Regular Languages
3. Identifying Nonregular Languages

- Using the Pigeonhole Principle
- A pumping Lemma

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- State the closure properties applicable to regular languages
- Prove that regular languages are closed under union, concatenation, star-closure, complementation, and intersection
- Prove that regular languages are closed under reversal
- Describe a membership algorithm for regular languages
- Describe an algorithm to determine if a regular language is empty, finite, or infinite
- Describe an algorithm to determine if two regular languages are equal
- Apply the pumping lemma to show that a language is not regular

Closure under Simple Set Operations

Theorem 4.1: If L, L_{1} and L_{2} are regular languages, then so are $L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1} L_{2}, \bar{L}$, and L^{*}. We say that the family of regular language is closed under union, intersection, concatenation, complementation, and star-closure.

Let r, r_{1}, r_{2} be regular expressions such that
$L=L(r), L_{1}=L\left(r_{1}\right)$, and $L_{2}=L\left(r_{2}\right)$
We have $L^{*}=L\left(r^{*}\right), L_{1} \cup L_{2}=L\left(r_{1}+r_{2}\right), L_{1} L_{2}=L\left(r_{1} r_{2}\right)$
Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ be a DFA such that $L=L(M)$
We have $\bar{L}=L(\bar{M})$, where $\bar{M}=\left(Q, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{Q}-\mathrm{F}\right)$
Finally, we have $L_{1} \cap L_{2}=\overline{\left(\overline{L_{1}} \cup \overline{L_{2}}\right)}$

Closure under Simple Set Operations

Example 4.1: Show that if L_{1} and L_{2} are regular, so is $L_{1}-L_{2}$.

$$
\text { We have } L_{1}-L_{2}=L_{1} \cap \overline{L_{2}}
$$

Theorem 4.2: The family of regular languages is closed under reversal.

Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0},\left\{\mathrm{q}_{\mathrm{f}}\right\}\right)$ be an NFA such that $L=L(M)$
We have $L^{R}=L\left(M^{R}\right)$, where $M^{R}=\left(Q, \Sigma, \delta^{R}, q_{f},\left\{q_{0}\right\}\right)$

Closure under Other Operations

Definition 4.1: Suppose Σ and Γ are alphabets. Then a function $\mathrm{h}: \Sigma^{*} \rightarrow \Gamma^{*}$ is called a homomorphism, if

$$
h\left(a_{1} a_{2} \ldots a_{n}\right)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right) \quad(\text { or } h(u v)=h(u) h(v))
$$

If L is a language on Σ, then its image is defined as

$$
h(L)=\{h(w): w \in L\}
$$

Example 4.2: $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\Gamma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. A homomorphism h is defined as $h(a)=a b$ and $h(b)=b b c . L=\{a a, a b a\} . h(L)=$?

Closure under Other Operations

Example 4.3: $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and $\Gamma=\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$. A homomorphism h is defined as $h(a)=d b c c$ and $h(b)=b d c$.

$$
\begin{aligned}
& \text { Let } \left.\begin{array}{rl}
\mathrm{r} & =\left(\mathrm{a}+\mathrm{b}^{*}\right)(\mathrm{aa})^{*} \text { and } \\
\begin{array}{rl}
\mathrm{h}(\mathrm{r}) & =\left(\mathrm{h}(\mathrm{a})+\mathrm{h}(\mathrm{~b})^{*}\right)(\mathrm{h}(\mathrm{a}) \mathrm{h}(\mathrm{a}))^{*} \\
& =\left(\mathrm{dbcc}+(\mathrm{bdc})^{*}\right)(\mathrm{dbccdbcc})^{*}
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right) .
\end{aligned}
$$

Then, we have $\mathrm{L}(\mathrm{h}(\mathrm{r}))=\mathrm{h}(\mathrm{L}(\mathrm{r}))$
Theorem 4.3: Let h be a homomorphism, if L is a regular language, then its image $h(L)$ is also regular.

Let r is regular expression such that $L=L(r)$

$$
h(L)=h(L(r))=L(h(r))
$$

Closure under Other Operations

Definition 4.2:
Let L_{1} and L_{2} be languages on the same alphabet. Then the right quotient of L_{1} with L_{2}
is defined as $\mathrm{L}_{1} / \mathrm{L}_{2}=$
$\left\{\mathrm{x}: \mathrm{xy} \in \mathrm{L}_{1}\right.$ for some $\left.\mathrm{y} \in \mathrm{L}_{2}\right\}$

Example 4.4:
Let $\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n} \geq 1, \mathrm{~m} \geq 0\right\} \cup\{\mathrm{ba}\}$
and $\mathrm{L}_{2}=\left\{\mathrm{b}^{\mathrm{m}}: \mathrm{m} \geq 1\right\}$.
Then $\mathrm{L}_{1} / \mathrm{L}_{2}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n} \geq 1, \mathrm{~m} \geq 0\right\}$

Closure under Other Operations

Definition 4.2:
Let L_{1} and L_{2} be languages on the same alphabet. Then the right quotient of L_{1} with L_{2}
is defined as $\mathrm{L}_{1} / \mathrm{L}_{2}=$
$\left\{\mathrm{x}: \mathrm{xy} \in \mathrm{L}_{1}\right.$ for some $\left.\mathrm{y} \in \mathrm{L}_{2}\right\}$

Example 4.4:
Let $\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n} \geq 1, \mathrm{~m} \geq 0\right\} \cup\{\mathrm{ba}\}$ and $\mathrm{L}_{2}=\left\{\mathrm{b}^{\mathrm{m}}: \mathrm{m} \geq 1\right\}$.
Then $\mathrm{L} 1 / \mathrm{L} 2==\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}}: \mathrm{n} \geq 1, \mathrm{~m} \geq 0\right\}$

Closure under Other Operations

Theorem 4.4: If L_{1} and L_{2} are regular, then L_{1} / L_{2} is also regular.
Example 4.5: Let $\mathrm{L}_{1}=\mathrm{L}\left(\mathrm{a}^{*} \mathrm{baa}^{*}\right)$ and $\mathrm{L}_{2}=\mathrm{L}\left(\mathrm{ab}^{*}\right)$. Find $\mathrm{L}_{1} / \mathrm{L}_{2}$.

Elementary Questions

Recall: What is a regular language?
Finite automaton, Regular expression, Regular grammar
Theorem 4.5: Given any regular language L on Σ and any $\mathrm{w} \in \Sigma^{*}$, there exists an algorithm for determining whether or not w is in L.

Theorem 4.6: There exists an algorithm for determining whether a regular language is empty, finite, or infinite.

Theorem 4.7: Given two regular languages L_{1} and L_{2}, there exists an algorithm for determining whether or not $L_{1}=L_{2}$.

$$
L_{3}=\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\left(\overline{L_{1}} \cap L_{2}\right)\right)
$$

