CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 4 Properties of Regular Languages

- 1. Closure Properties of Regular Languages
 - Closure under Simple Set Operations
 - Closure under Other Operations
- 2. Elementary Questions about Regular Languages
- 3. Identifying Nonregular Languages
 - Using the Pigeonhole Principle
 - A pumping Lemma

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- State the closure properties applicable to regular languages
- Prove that regular languages are closed under union, concatenation, star-closure, complementation, and intersection
- Prove that regular languages are closed under reversal
- Describe a membership algorithm for regular languages
- Describe an algorithm to determine if a regular language is empty, finite, or infinite
- Describe an algorithm to determine if two regular languages are equal
- Apply the pumping lemma to show that a language is not regular

Closure under Simple Set Operations

Theorem 4.1: If L, L_1 and L_2 are regular languages, then so are $L_1 \cup L_2$, $L_1 \cap L_2$, L_1L_2 , \overline{L} , and L^* . We say that the family of regular language is closed under union, intersection, concatenation, complementation, and star-closure.

Let
$$r, r_1, r_2$$
 be regular expressions such that
 $L = L(r), L_1 = L(r_1), and L_2 = L(r_2)$
We have $L^* = L(r^*), L_1 \cup L_2 = L(r_1 + r_2), L_1L_2 = L(r_1r_2)$

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA such that $L = L(M)$
We have $\overline{L} = L(\overline{M})$, where $\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$

Finally, we have $L_1 \cap L_2 = \overline{(\overline{L_1} \cup \overline{L_2})}$

Closure under Simple Set Operations

Example 4.1: Show that if L_1 and L_2 are regular, so is L_1 - L_2 .

We have $L_1 - L_2 = L_1 \cap \overline{L_2}$

Theorem 4.2: The family of regular languages is closed under reversal.

Let $M = (Q, \Sigma, \delta, q_0, \{q_f\})$ be an NFA such that L = L(M)We have $L^R = L(M^R)$, where $M^R = (Q, \Sigma, \delta^R, q_f, \{q_0\})$

Definition 4.1: Suppose Σ and Γ are alphabets. Then a function h: $\Sigma^* \rightarrow \Gamma^*$ is called a homomorphism, if

$$\begin{split} h(a_1a_2...a_n) &= h(a_1)h(a_2)...h(a_n) \quad (\text{or } h(uv) = h(u)h(v)) \\ \text{If } L \text{ is a language on } \Sigma, \text{ then its image is defined as} \\ h(L) &= \{h(w) : w \in L\} \end{split}$$

Example 4.2: $\Sigma = \{a, b\}$ and $\Gamma = \{a, b, c\}$. A homomorphism h is defined as h(a)=ab and h(b)=bbc. L= $\{aa, aba\}$. h(L)=?

Example 4.3: $\Sigma = \{a, b\}$ and $\Gamma = \{b, c, d\}$. A homomorphism h is defined as h(a) = dbcc and h(b) = bdc. Let r = (a+b*)(aa)* and h(r) = (h(a)+h(b)*)(h(a)h(a))* = (dbcc+(bdc)*)(dbccdbcc)* Then, we have L(h(r)) = h(L(r))

Theorem 4.3: Let h be a homomorphism, if L is a regular language, then its image h(L) is also regular.

Let *r* is regular expression such that L = L(r)

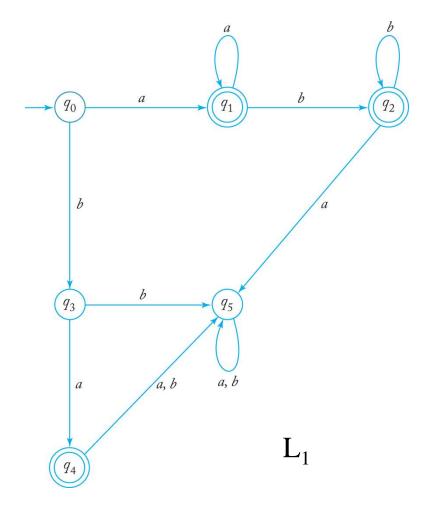
$$h(L) = h(L(r)) = L(h(r))$$

Definition 4.2:

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_1/L_2 =$

$$\{x: xy \in L_1 \text{ for some } y \in L_2\}$$

Example 4.4: Let $L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$ and $L_2 = \{b^m : m \ge 1\}$. Then $L_1/L_2 = \{a^n b^m : n \ge 1, m \ge 0\}$

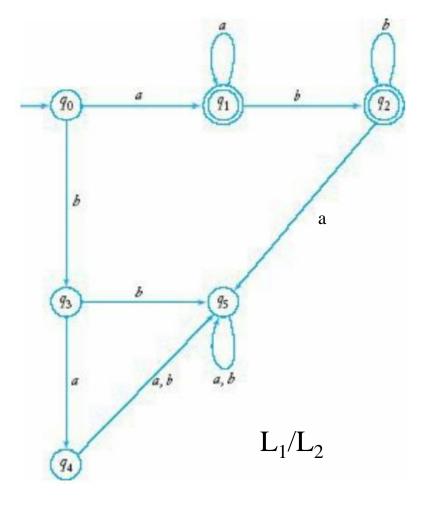


Definition 4.2:

Let L_1 and L_2 be languages on the same alphabet. Then the right quotient of L_1 with L_2 is defined as $L_1/L_2 =$

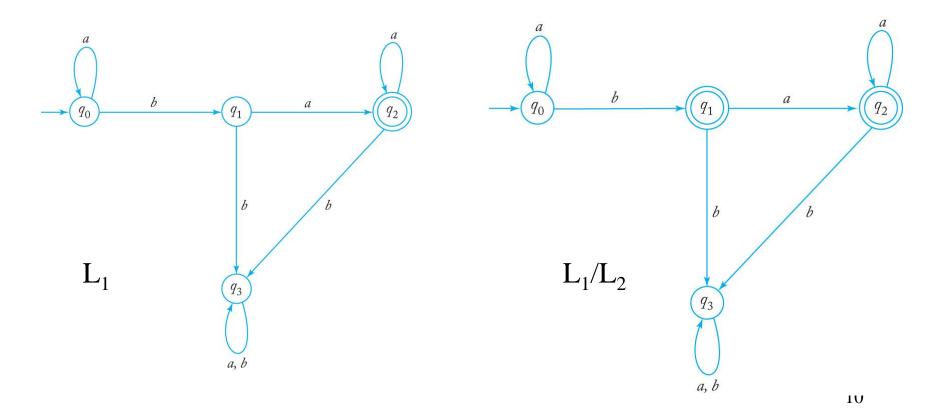
$$\{x: xy \in L_1 \text{ for some } y \in L_2\}$$

Example 4.4: Let $L_1 = \{a^n b^m : n \ge 1, m \ge 0\} \cup \{ba\}$ and $L_2 = \{b^m : m \ge 1\}$. Then $L1/L2 = =\{a^n b^m : n \ge 1, m \ge 0\}$



Theorem 4.4: If L_1 and L_2 are regular, then L_1/L_2 is also regular.

Example 4.5: Let $L_1 = L(a*baa*)$ and $L_2 = L(ab*)$. Find L_1/L_2 .



Elementary Questions

Recall: What is a regular language? Finite automaton, Regular expression, Regular grammar

Theorem 4.5: Given any regular language L on Σ and any $w \in \Sigma^*$, there exists an algorithm for determining whether or not w is in L.

Theorem 4.6: There exists an algorithm for determining whether a regular language is empty, finite, or infinite.

Theorem 4.7: Given two regular languages L_1 and L_2 , there exists an algorithm for determining whether or not $L_1 = L_2$.

$$L_3 = (L_1 \cap \overline{L_2}) \cup ((\overline{L_1} \cap L_2))$$