CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Regular Grammar

Definition 3.3: A grammar G=(V, T, S, P) is said to be right-linear if all productions are of the form $A \rightarrow xB$ $A \rightarrow x$

Where A, B \in V, and x \in T*. A grammar is said to be left-linear if all productions are of the form $A \rightarrow Bx$

 $A \rightarrow x$

A regular grammar is one that is either right-linear or left-linear.

A linear grammar is a grammar in which at most one variable can occur on the right side of any production.

Examples

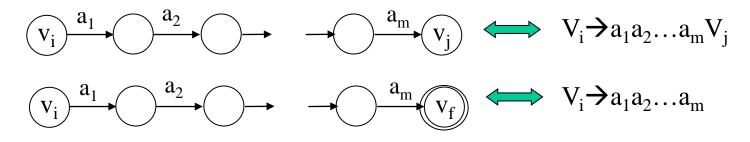
Example 3.13: $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as $S \rightarrow abS \mid a$. is right-linear. $L(G_1) = ?$

$$G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2), \text{ with } P_2 \text{ given as} \\ S \rightarrow S_1 ab, S_1 \rightarrow S_1 ab \mid S_2, S_2 \rightarrow a. \\ \text{is left-linear. } L(G_2) = ?$$

Example 3.14: G=({S, A, B}, {a, b}, S, P), with P given as $S \rightarrow A, A \rightarrow aB | \lambda, B \rightarrow Ab$ is not regular. But, it a linear grammar.

Right-Linear Grammars Generate Regular Languages

Theorem 3.3: Let G=(V, T, S, P) be a right-linear grammar. Then L(G) is a regular language.

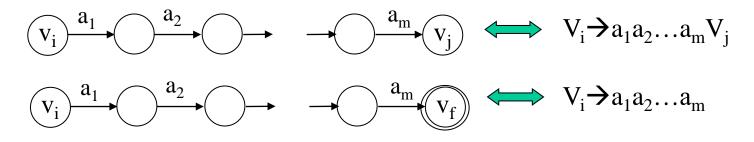


Example 3.15: Construct a finite automaton that accepts the language generated by the grammar $V_0 \rightarrow aV_1$

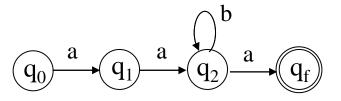
$$V_1^{\circ} \rightarrow abV_0 \mid b$$

Right-Linear Grammars for Regular Languages

Theorem 3.4: If L is a regular language on alphabet Σ . Then there exists a right-linear grammar G=(V, T, S, P) such that L=L(G).



Example 3.16: Construct a right-linear grammar for L(aab*a).



Equivalence of Regular Grammar and Regular Language as well as Regular Expression, NFA, or DFA

