CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Regular Expressions Denote Regular Languages

Theorem 3.1: Let *r* be a regular expression. Then there exists some nondeterministic finite accepter that accepts L(r). Consequently, L(r) is a regular language.

FIGURE 3.4 Automaton for $L(r_1r_2)$.

Regular Expressions Denote Regular Languages

?

Regular Expressions Denote Regular Languages

Example 3.7

Find an nfa which accepts L(r), where $r = (a + bb)^* (ba^* + \lambda)$

Generalized Transition Graph

In generalized transition graph, edges are regular expressions

Example 3.8

Find the language accepted by the generalized transition graph

Regular Expressions for Regular Languages

Theorem 3.2: Let L be a regular language. Then there exists a regular expression r such that L(r) = L.

Proof Ideals

- 1. Let an NFA M accept L. Assume M has only one final state that is different with the initial state.
- 2. Convert M to an equivalent generalized transition graph by removing all states except the initial state and the final state.
- 3. The regular expression is

$$\mathbf{r} = \mathbf{r}_1 * \mathbf{r}_2 (\mathbf{r}_4 + \mathbf{r}_3 \mathbf{r}_1 * \mathbf{r}_2) *$$

Transition Graph → Generalized Transition Graph

Transition Graph

Generalized Transition Graph

Example 3.9: Convert the nfa to generalized transition graph

Example: Find a regular expression for the language $L(r) = \{ w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros} \}$ **Example:** Find a regular expression for the language

 $L(r) = \{ w \in \{0,1\} *: w \text{ has no pair of consecutive zeros} \}$

Describing Simple Patterns by Regular Expressions

/aba*c/

Regular Grammar

Definition 3.3: A grammar G=(V, T, S, P) is said to be right-linear if all productions are of the form $A \rightarrow xB$ $A \rightarrow x$

Where A, B \in V, and x \in T*. A grammar is said to be left-linear if all productions are of the form $A \rightarrow Bx$

 $A \rightarrow x$

A regular grammar is one that is either right-linear or left-linear.

A linear grammar is a grammar in which at most one variable can occur on the right side of any production.