CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Regular Expressions Denote Regular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some nondeterministic finite accepter that accepts $\mathrm{L}(r)$. Consequently, $\mathrm{L}(r)$ is a regular language.

FIGURE 3.1 (a) nfa accepts \varnothing. (b) nfa accepts $\{\lambda\}$. (c) nfa accepts $\{a\}$.

FIGURE 3.4 Automaton for $L\left(r_{1} r_{2}\right)$.

Regular Expressions Denote Regular Languages

FIGURE 3.3 Automaton for $L\left(r_{1}+r_{2}\right)$.

NFA or DFA M

? § Theorem 3.1
Regular expression r

Regular Expressions Denote Regular Languages

Example 3.7
Find an nfa which accepts $L(r)$, where

$$
\mathrm{r}=(\mathrm{a}+\mathrm{bb})^{*}\left(\mathrm{ba}^{*}+\lambda\right)
$$

Generalized Transition Graph

In generalized transition graph, edges are regular expressions

Example 3.8
Find the language accepted by the generalized transition graph

Regular Expressions for Regular Languages

Theorem 3.2: Let L be a regular language. Then there exists a regular expression r such that $\mathrm{L}(r)=\mathrm{L}$.

Proof Ideals

1. Let an NFA M accept L. Assume M has only one final state that is different with the initial state.
2. Convert M to an equivalent generalized transition graph by removing all states except the initial state and the final
 state.
3. The regular expression is

$$
\mathrm{r}=\mathrm{r}_{1} * \mathrm{r}_{2}\left(\mathrm{r}_{4}+\mathrm{r}_{3} \mathrm{r}_{1}{ }^{*} \mathrm{r}_{2}\right)^{*}
$$

Transition Graph \rightarrow

Generalized Transition Graph

Transition Graph

Generalized Transition Graph

Example: Find a regular expression for the language

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\}
$$

Example: Find a regular expression for the language

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\}
$$

Describing Simple Patterns by Regular Expressions $\quad \mid a b a * c /$

Regular Grammar

Definition 3.3: A grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is said to be right-linear if all productions are of the form

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{xB} \\
& \mathrm{~A} \rightarrow \mathrm{x}
\end{aligned}
$$

Where $A, B \in V$, and $x \in T^{*}$. A grammar is said to be left-linear if all productions are of the form

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{Bx} \\
& \mathrm{~A} \rightarrow \mathrm{x}
\end{aligned}
$$

A regular grammar is one that is either right-linear or left-linear.

A linear grammar is a grammar in which at most one variable can occur on the right side of any production.

