CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Review of Chapter 2 Concept Map

Chapter 3

Regular Languages and Regular Grammars

- 1. Regular Expressions
 - Formal Definition of a regular Expression
 - Languages Associated with Regular Expressions
- Connection Between Regular Expressions and Regular Languages
 - Regular Expressions Denote Regular Languages
 - Regular Expressions for Regular Languages
 - Regular Expressions for Describing Simple Patterns

3. Regular Grammars

- Right- and Left-Linear Grammars
- Right-Linear Grammars Generate Regular Languages
- Right-Linear Grammars for Regular Languages
- Equivalence Between Regular Languages and Regular grammars

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Identify the language associated with a regular expression
- Find a regular expression to describe a given language
- Construct a nondeterministic finite automaton to accept the language denoted by a regular expression
- Use generalized transition graphs to construct a regular expression that denotes the language accepted by a given finite automaton
- Identify whether a particular grammar is regular
- Construct regular grammars for simple languages
- Construct a nfa that accepts the language generated by a regular grammar
- Construct a regular grammar that generates the language accepted by a finite automaton

Regular Expression

Definition 3.1

Let Σ be a given alphabet. Then

- 1. \emptyset , λ , and $a \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
- 2. If r_1 , r_2 and r are regular expressions, so are r_1+r_2 , $r_1 \cdot r_2$, r^* , and (r).
- 3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Example 3.1

For $\Sigma = \{a, b, c\}$, the string $(a+b \cdot c)^* \cdot (c + \emptyset)$ is a regular expression, but, the string (a+b+) is not.

Languages Associated with Regular Expressions

Definition 3.2

The language L(r) denoted by any regular expression r is defined by the following rules.

- 1. \emptyset is a regular expression denoting the empty set,
- 2. λ is a regular expression denoting $\{\lambda\}$,
- 3. For every $a \in \Sigma$, a is a regular expression denoting $\{a\}$.

If r_1 , r_2 and r are regular expressions, then

- 4. $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
- 5. $L(r_1 \cdot r_2) = L(r_1) L(r_2)$
- 6. L((r)) = L(r)
- 7. $L(r^*) = (L(r))^*$

Precedence rule

Star-closure: *

Concatenation: •

Union: +

Note: • can be omitted.

Sample Regular Expressions and Associated Languages

Regular Expression	Language
(ab)*	$\{ (ab)^n, n \ge 0 \}$
a + b	{ a, b }
$(a + b)^*$	{ a, b }* (in other words, any string formed with a and b)
a(bb)*	{ a, abb, abbbb, abbbbbb, }
a*(a+b)	{ a, aa, aaa,, b, ab, aab, } (Example 3.2)
(aa)*(bb)*b	{ b, aab, aaaab,, bbb, aabbb, } (Example 3.4)
(0+1)*00(0+1)*	Binary strings containing at least one pair of consecutive zeros

Example 3.2 $L(a^* \cdot (a+b)) = ?$

Example 3.3

Let r = (a+b)*(a+bb). L(r) = ?

Example 3.4

Let $r = (aa)^* (bb)^* b$. L(r) = ?

Example 3.5 For $\Sigma = \{0, 1\}$, give a regular expression r such that $L(r) = \{ w \in \{0,1\}^* : w \text{ has at least one pair of consecutive zeros} \}$

Example 3.6 Find a regular expression for the language

 $L(r) = \{ w \in \{0,1\}^* : w \text{ has no pair of consecutive zeros} \}$

We say the two regular expressions are equivalent if they denote the same language.

Regular Expressions Denote Regular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some nondeterministic finite accepter that accepts L(r). Consequently, L(r) is a regular language.

FIGURE 3.1 (a) nfa accepts \emptyset . (b) nfa accepts $\{\lambda\}$. (c) nfa accepts $\{a\}$.

FIGURE 3.4 Automaton for $L(r_1r_2)$.