CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Review of Chapter 2 Concept Map

Extended transition function

Chapter 3

Regular Languages and Regular Grammars

1. Regular Expressions

- Formal Definition of a regular Expression
- Languages Associated with Regular Expressions

2. Connection Between Regular Expressions and Regular Languages

- Regular Expressions Denote Regular Languages
- Regular Expressions for Regular Languages
- Regular Expressions for Describing Simple Patterns

3. Regular Grammars

- Right- and Left-Linear Grammars
- Right-Linear Grammars Generate Regular Languages
- Right-Linear Grammars for Regular Languages
- Equivalence Between Regular Languages and Regular grammars

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Identify the language associated with a regular expression
- Find a regular expression to describe a given language
- Construct a nondeterministic finite automaton to accept the language denoted by a regular expression
- Use generalized transition graphs to construct a regular expression that denotes the language accepted by a given finite automaton
- Identify whether a particular grammar is regular
- Construct regular grammars for simple languages
- Construct a nfa that accepts the language generated by a regular grammar
- Construct a regular grammar that generates the language accepted by a finite automaton

Regular Expression

Definition 3.1

Let Σ be a given alphabet. Then

1. \varnothing, λ, and $\mathrm{a} \in \Sigma$ are all regular expressions. These are called primitive regular expressions.
2. If r_{1}, r_{2} and r are regular expressions, so are $r_{1}+r_{2}, r_{1} \bullet r_{2}, r^{*}$, and (r).
3. A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Example 3.1
For $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, the string $(\mathrm{a}+\mathrm{b} \bullet \mathrm{c})^{*} \cdot(\mathrm{c}+\varnothing)$ is a regular expression, but, the string ($\mathrm{a}+\mathrm{b}+$) is not.

Languages Associated with Regular Expressions

Definition 3.2

The language $\mathrm{L}(\mathrm{r})$ denoted by any regular expression r is defined by the following rules.

1. \varnothing is a regular expression denoting the empty set,
2. λ is a regular expression denoting $\{\lambda\}$,
3. For every a $\in \Sigma$, a is a regular expression denoting $\{\mathrm{a}\}$.

If r_{1}, r_{2} and r are regular expressions, then
4. $\mathrm{L}\left(r_{1}+r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cup \mathrm{L}\left(r_{2}\right)$
5. $\mathrm{L}\left(r_{1} \cdot r_{2}\right)=\mathrm{L}\left(r_{1}\right) \mathrm{L}\left(r_{2}\right)$
6. $\mathrm{L}((r))=\mathrm{L}(r)$
7. $\mathrm{L}\left(r^{*}\right)=(\mathrm{L}(r))^{*}$

Precedence rule
Star-closure: *
Concatenation: •
Union: +
Note: • can be omitted.

Sample Regular Expressions and Associated Languages

Regular Expression	Language
$(\mathrm{ab})^{*}$	$\left\{(\mathrm{ab})^{\mathrm{n}}, \mathrm{n} \geq 0\right\}$
$\mathrm{a}+\mathrm{b}$	$\{\mathrm{a}, \mathrm{b}\}$
$(\mathrm{a}+\mathrm{b})^{*}$	$\{\mathrm{a}, \mathrm{b}\}^{*}$ (in other words, any string formed with a and b$)$
$\mathrm{a}(\mathrm{bb})^{*}$	$\{\mathrm{a}, \mathrm{abb}, \mathrm{abbbb}, \mathrm{abbbbb}, \ldots\}$
$\mathrm{a} *(\mathrm{a}+\mathrm{b})$	$\{\mathrm{a}, \mathrm{aa}, \mathrm{aaa}, \ldots, \mathrm{b}, \mathrm{ab}, \mathrm{aab}, \ldots\}$ (Example 3.2)
$(\mathrm{aa})^{*}(\mathrm{bb})^{*} \mathrm{~b}$	$\{\mathrm{~b}$, aab, aaaab, \ldots, bbb, aabbb, $\ldots\}$ (Example 3.4)
$(0+1)^{*} 00(0+1)^{*}$	Binary strings containing at least one pair of consecutive zeros

Languages and Regular Expressions

Example $3.2 \quad \mathrm{~L}\left(\mathrm{a}^{*} \cdot(\mathrm{a}+\mathrm{b})\right)=$?

Languages and Regular Expressions

Example 3.3 Let $\mathrm{r}=(\mathrm{a}+\mathrm{b})^{*}(\mathrm{a}+\mathrm{bb}) . \mathrm{L}(\mathrm{r})=$?

Languages and Regular Expressions

Example $3.4 \quad$ Let $\mathrm{r}=(\mathrm{aa})^{*}(\mathrm{bb})^{*} \mathrm{~b} . \mathrm{L}(\mathrm{r})=$?

Languages and Regular Expressions

Example $3.5 \quad$ For $\Sigma=\{0,1\}$, give a regular expression r such that $L(r)=\left\{w \in\{0,1\}^{*}: w\right.$ has at least one pair of consecutive zeros $\}$

Languages and Regular Expressions

Example 3.6 Find a regular expression for the language

$$
L(r)=\left\{w \in\{0,1\}^{*}: w \text { has no pair of consecutive zeros }\right\}
$$

We say the two regular expressions are equivalent if they denote the same language.

Regular Expressions Denote Regular Languages

Theorem 3.1: Let r be a regular expression. Then there exists some nondeterministic finite accepter that accepts $\mathrm{L}(r)$. Consequently, $\mathrm{L}(r)$ is a regular language.

FIGURE 3.1 (a) nfa accepts \varnothing. (b) nfa accepts $\{\lambda\}$. (c) nfa accepts $\{a\}$.

FIGURE 3.4 Automaton for $L\left(r_{1} r_{2}\right)$.

