
1

Automata, Computability, and

Formal Language

CS 4410

Dr. Xuejun Liang

2

Chapter 2

Finite Automata

1. Deterministic Finite Accepters

• Deterministic Accepters and Transition Graphs

• Languages and Dfas

• Regular Language

2. Nondeterministic Finite Accepters

• Definition of a Nondeterministic Accepter

• Why Nondeterministic

3. Equivalence of Deterministic and Nondeterministic

Finite Accepters

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Describe the components of a deterministic finite
accepter (dfa)

• State whether an input string is accepted by a dfa

• Describe the language accepted by a dfa

• Construct a dfa to accept a specific language

• Show that a particular language is regular

• Describe the differences between deterministic and
nondeterministic finite automata (nfa)

• State whether an input string is accepted by a nfa

• Construct a nfa to accept a specific language

• Transform an arbitrary nfa to an equivalent dfa

4

Nondeterministic Finite Accepters

Definition 2.4
A nondeterministic finite accepter or nfa is defined by the quintuple

M = (Q, , , q0, F)

where Q, , q0, and F are as for deterministic finite accepter, but

: Q({}) → 2Q

An automaton is nondeterministic if it has a choice of actions

for given conditions

Basic differences between deterministic and nondeterministic finite

automata:

• In an nfa, a (state, symbol) combination may lead to several states

simultaneously

• If a transition is labeled with the empty string as its input symbol,

the nfa may change states without consuming input

• An nfa may have undefined transitions

5

Nondeterministic Finite Accepters

Transition Graph of an nfa M = (Q, , , q0, F)

Vertex labeled with qi: state qi Q,

Edge from qi to qj labeled with a: qj (qi, a)

Example 2.7: An nfa is shown as below in Figure 2.8

q0

a

q2 q3a q1

q4 q5

a a

a

a

6

Nondeterministic Finite Accepters

Example 2.8 An nfa is shown in Figure 2.9 as below

The extended transition function * : Q* → 2Q could be defined by

)},(:),({),(

),(}{),(

wqpapwaq

qqq

=

=

q2q0

0,1

0

1
q1

Definition 2.5 (This could a theorem if the above definition is used)

For an nfa, the extended transition function is defined so that *(qi,w)

contains qj if and only if there is a walk in the transition graph from qi

to qj labeled w. This holds for all qi, qj Q and w *.

7

Nondeterministic Finite Accepters

Example 2.9 Consider an nfa in Figure 2.10, we have

q2q1
a

q0

},,{),(

},{),(

},,{),(

2102

202

2101

qqqaaq

qqq

qqqaq

=

=

=

)},(:),({),(

),(}{),(

wqpapwaq

qqq

=

=

8

Nondeterministic Finite Accepters

Definition 2.6

The language accepted by an nfa M = (Q, , , q0, F) is the set of all

strings on accepted by M. In formal notation

}.),(:{)(0 = FwqwML

Example 2.10 What is the language accepted by the nfa in Example 2.8

Why Nondeterminism?

q2q0

0,1

0

1
q1

Figure 2.9

9

Equivalence of Deterministic and

Nondeterministic Finite Accepters
Definition 2.7

Two finite accepters M1 and M2 are said to be equivalent if

L(M1)=L(M2)

That is, if they accept the same language.

Example 2.11

The dfa is equivalent to

the nfa in Example 2.8

q2q0

1

0

1
q1

0

0,1

q2q0

0,1

0

1
q1

Figure 2.9

Figure 2.11

10

Example 2.12

Convert the nfa to

an equivalent dfa

q2q1

q0

a

a

b

Figure 2.12

DFA state a b

{𝑞0} {𝑞1, 𝑞2}

{𝑞1, 𝑞2} {𝑞1, 𝑞2} {𝑞0}

Figure 2.13

11

Theorem 2.2 Let L be the language accepted by an nfa

MN = (QN, , N, q0, FN). Then there exists a dfa

MD = (QD, , D, {q0}, FD) such that L = L(MD).

Property: Every language accepted by an nfa is regular

1. Create a graph GD with vertex {q0} as the initial vertex

2. Repeat until no more edges are missing

a. Take any vertex {qi, qj, .., qk} of GD that has no outgoing edge for some a .

b. Compute {ql, qm, …,qn} = *(qi, a)*(qj, a) … *(qk, a)

c. Create a vertex for GD labeled {ql, qm, …,qn} if it does not already exist.

d. Add to GD an edge from {qi, qj, .., qk} to {ql, qm, …,qn} and label it with a

3. Every state of GD whose label contains any qf FN is identified as a final vertex.

4. If MN accepts , the vertex {q0} in GD is also made a final vertex.

Procedure: nfa-to-dfa

12

Example 2.13

Convert the nfa to

an equivalent dfa
q2q1

0, 1
q0

0, 1
0 1

Figure 2.14

DFA state 0 1

{𝑞0} {𝑞0, 𝑞1} {𝑞1}

{𝑞0, 𝑞1} {𝑞0, 𝑞1, 𝑞2} {𝑞1, 𝑞2}

{𝑞1} {𝑞2} {𝑞2}

{𝑞0, 𝑞1, 𝑞2} {𝑞0, 𝑞1, 𝑞2} {𝑞1, 𝑞2}

{𝑞1, 𝑞2} {𝑞2} {𝑞2}

{𝑞2} {𝑞2}

