CS 4410

Automata, Computability, and
Formal Language

Dr. Xuejun Liang

Chapter 2

Finite Automata

1. Deterministic Finite Accepters

« Deterministic Accepters and Transition Graphs
« Languages and Dfas
« Regular Language
2. Nondeterministic Finite Accepters
« Definition of a Nondeterministic Accepter
« Why Nondeterministic

3. Equivalence of Deterministic and Nondeterministic
Finite Accepters

Learning Objectives

At the conclusion of the chapter, the student will be able to:

Describe the components of a deterministic finite
accepter (dfa)

State whether an input string Is accepted by a dfa
Describe the language accepted by a dfa
Construct a dfa to accept a specific language
Show that a particular language Is regular

Describe the differences between deterministic and
nondeterministic finite automata (nfa)

State whether an input string Is accepted by a nfa
Construct a nfa to accept a specific language
Transform an arbitrary nfa to an equivalent dfa

Nondeterministic Finite Accepters

An automaton is nondeterministic if it has a choice of actions
for given conditions

Definition 2.4
A nondeterministic finite accepter or nfa is defined by the quintuple

M — (Ql 2! 8! qO! F)
where Q, %, g,, and F are as for deterministic finite accepter, but
3. Qx(ZuU{r}) —» 29

Basic differences between deterministic and nondeterministic finite
automata:
* In an nfa, a (state, symbol) combination may lead to several states

simultaneously
 If atransition is labeled with the empty string as its input symbol,
the nfa may change states without consuming input

« An nfa may have undefined transitions

Nondeterministic Finite Accepters

Transition Graph of an nfa M = (Q, X, 8, q,, F)
Vertex labeled with g;: state g; € Q,
Edge from g; to g; labeled with a: q; € 6(q;, a)

Example 2.7: An nfa Is shown as below In Figure 2.8

<’@ ®

SO

Nondeterministic Finite Accepters

Example 2.8 An nfa is shown in Figure 2.9 as below
0

()

A

The extended transition function &* : QxX* = 22 could be defined by

07(q,4) ={q}u (g, 1)
o7 (g,wa) = A5(p,a): peds(q,w)}

Definition 2.5 (This could a theorem if the above definition is used)
For an nfa, the extended transition function is defined so that 56*(q;,w)
contains g; if and only if there Is a walk in the transition graph from g;
to g; labeled w. This holds for all g;, g; € Q and w € X*.

Nondeterministic Finite Accepters

Example 2.9 Consider an nfa in Figure 2.10, we have

) 5" (0y,8) ={Go, %, 9, }
B 5" (0 1) {062}

57 (0,,aa) ={0,,0,,0,}

07(q,4) ={q}u (g, 1)
o7 (g,wa) = A5(p,a): ped(q,w)}

Nondeterministic Finite Accepters

Definition 2.6
The language accepted by an nfa M = (Q, Z, 3, q,, F) Is the set of all

strings on X accepted by M. In formal notation
L(M)={weX" :67(q,,W)"F =}
Example 2.10 What is the language accepted by the nfa in Example 2.8

0
_» , . 0,1
A
Figure 2.9

Why Nondeterminism?

Equivalence of Deterministic and
Nondeterministic Finite Accepters

Definition 2.7
Two finite accepters M, and M, are said to be equivalent if

L(My)=L(M,)

That is, if they accept the same Ianguage
I
Example 2.11
The dfa is equivalent to —'
the nfa in Example 2.8
0 Figure 2.11
0,1 '
—()_,
A

Figure 2.9

Example 2.12 »a/\
Convert the nfa to _,

an equivalent dfa

 DFAstate |_a | b __

{40} {91, 92} @

{91, 92} {491, 92} {40}
())] ()]

Figure 2.13

10

Theorem 2.2 Let L be the language accepted by an nfa
My = (Qny Z, Oy Qo F)- Then there exists a dfa
Mp = (Qp, Z, dp, {0y}, Fp) such that L = L(Mp).

Procedure: nfa-to-dfa

1. Create a graph G with vertex {q,} as the initial vertex

2. Repeat until no more edges are missing
a. Take any vertex {q;, q;, -, gy} of Gy, that has no outgoing edge for some a €X.
b. Compute {q;, 0y, ---,0n} = *(q;;)*(q;, @) ... L 5*(qy,)
c. Create a vertex for G labeled {q,, q,,, -.-,0,.} If it does not already exist.
d. Add to Gy an edge from {q;, g;, -., 9} to {q;, Gy, ---,0,} and label it with a
3. Every state of G whose label contains any g; € Fy, is identified as a final vertex.
4. If My accepts A, the vertex {q,} in G is also made a final vertex.

Property: Every language accepted by an nfa is regular

11

Example 2.13

0 ‘ 1
Convert the nfa to ‘ 0.1 0,1 ‘ Figure 2.14
an equivalent dfa —» " @

DFAstate | 0 | 1

{40} {90, 91} {91}
{90,913 {40, 91,92} {91, 92}

{q1} {q2} {q2}
{90, 91,92} {90,491, 92} {q1, 923
{q1, a2} {q2} {q2}
{q2} % {q2}

O O O

12

