CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 2

Finite Automata

- 1. Deterministic Finite Accepters
 - Deterministic Accepters and Transition Graphs
 - Languages and Dfas
 - Regular Language
- 2. Nondeterministic Finite Accepters
 - Definition of a Nondeterministic Accepter
 - Why Nondeterministic
- 3. Equivalence of Deterministic and Nondeterministic Finite Accepters

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a deterministic finite accepter (dfa)
- State whether an input string is accepted by a dfa
- Describe the language accepted by a dfa
- Construct a dfa to accept a specific language
- Show that a particular language is regular
- Describe the differences between deterministic and nondeterministic finite automata (nfa)
- State whether an input string is accepted by a nfa
- Construct a nfa to accept a specific language
- Transform an arbitrary nfa to an equivalent dfa

An automaton is nondeterministic if it has a choice of actions for given conditions

Definition 2.4

A nondeterministic finite accepter or nfa is defined by the quintuple

 $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$

where Q, Σ , q_0 , and F are as for deterministic finite accepter, but $\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$

Basic differences between deterministic and nondeterministic finite automata:

- In an nfa, a (state, symbol) combination may lead to several states <u>simultaneously</u>
- If a transition is labeled with the empty string as its input symbol, the nfa may change states <u>without consuming input</u>
- An nfa may have <u>undefined transitions</u>

Transition Graph of an nfa M = (Q, Σ , δ , q_0 , F) Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_i labeled with a: $q_i \in \delta(q_i, a)$

Example 2.7: An nfa is shown as below in Figure 2.8

Example 2.8 An nfa is shown in Figure 2.9 as below

The extended transition function $\delta^* : Q \times \Sigma^* \rightarrow 2^Q$ could be defined by

$$\delta^*(q,\lambda) = \{q\} \cup \delta(q,\lambda)$$
$$\delta^*(q,wa) = \bigcup \{\delta(p,a) \colon p \in \delta^*(q,w)\}$$

Definition 2.5 (This could a theorem if the above definition is used) For an nfa, the extended transition function is defined so that $\delta^*(q_i, w)$ contains q_j if and only if there is a walk in the transition graph from q_i to q_j labeled w. This holds for all $q_i, q_j \in Q$ and $w \in \Sigma^*$.

Example 2.9 Consider an nfa in Figure 2.10, we have

 $\delta^*(q_1, a) = \{q_0, q_1, q_2\}$ $\delta^*(q_2, \lambda) = \{q_0, q_2\}$ $\delta^*(q_2, aa) = \{q_0, q_1, q_2\}$

 $\delta^*(q,\lambda) = \{q\} \cup \delta(q,\lambda)$ $\delta^*(q,wa) = \bigcup \{\delta(p,a) \colon p \in \delta^*(q,w)\}$

Definition 2.6

The language accepted by an nfa $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M. In formal notation

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \emptyset \}.$$

Example 2.10 What is the language accepted by the nfa in Example 2.8

Figure 2.9

Why Nondeterminism?

Equivalence of Deterministic and Nondeterministic Finite Accepters

Definition 2.7

Two finite accepters M_1 and M_2 are said to be equivalent if $L(M_1)=L(M_2)$

That is, if they accept the same language.

Figure 2.11

Figure 2.9

Example 2.12 Convert the nfa to an equivalent dfa

Figure 2.12

DFA state	a	b
$\{q_0\}$	$\{q_1, q_2\}$	Φ
$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_0\}$
Φ	Φ	Φ

Figure 2.13

Theorem 2.2 Let L be the language accepted by an nfa $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$. Then there exists a dfa $M_D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ such that $L = L(M_D)$.

Procedure: nfa-to-dfa

- 1. Create a graph G_D with vertex $\{q_0\}$ as the initial vertex
- 2. Repeat until no more edges are missing
 - a. Take any vertex $\{q_i, q_j, ..., q_k\}$ of G_D that has no outgoing edge for some $a \in \Sigma$.
 - b. Compute $\{q_1, q_m, \dots, q_n\} = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \dots \cup \delta^*(q_k, a)$
 - c. Create a vertex for G_D labeled $\{q_l, q_m, ..., q_n\}$ if it does not already exist.
- d. Add to G_D an edge from $\{q_i, q_j, ..., q_k\}$ to $\{q_l, q_m, ..., q_n\}$ and label it with a 3. Every state of G_D whose label contains any $q_f \in F_N$ is identified as a final vertex.
- 4. If M_N accepts λ , the vertex $\{q_0\}$ in G_D is also made a final vertex.

Property: Every language accepted by an nfa is regular

Example 2.13 Convert the nfa to an equivalent dfa

Figure 2.14

DFA state	0	1
$\{q_0\}$	$\{q_0, q_1\}$	{ <i>q</i> ₁ }
$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$
$\{q_1\}$	{ <i>q</i> ₂ }	{ <i>q</i> ₂ }
$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$
$\{q_1, q_2\}$	{ <i>q</i> ₂ }	{ <i>q</i> ₂ }
$\{q_2\}$	Φ	{ <i>q</i> ₂ }
Φ	Φ	Φ

