CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 2

Finite Automata

- 1. Deterministic Finite Accepters
 - Deterministic Accepters and Transition Graphs
 - Languages and Dfas
 - Regular Language
- 2. Nondeterministic Finite Accepters
 - Definition of a Nondeterministic Accepter
 - Why Nondeterministic
- 3. Equivalence of Deterministic and Nondeterministic Finite Accepters

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Describe the components of a deterministic finite accepter (dfa)
- State whether an input string is accepted by a dfa
- Describe the language accepted by a dfa
- Construct a dfa to accept a specific language
- Show that a particular language is regular
- Describe the differences between deterministic and nondeterministic finite automata (nfa)
- State whether an input string is accepted by a nfa
- Construct a nfa to accept a specific language
- Transform an arbitrary nfa to an equivalent dfa

Deterministic Finite Accepters

Definition 2.1

A deterministic finite accepter or dfa is defined by the quintuple

 $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $\delta: Q \times \Sigma \rightarrow Q$ is a total function called the transition function,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

Example 2.1 $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$, where δ is given by

$$\begin{split} &\delta(q_0, 0) = q_0, \, \delta(q_0, 1) = q_1, \, \delta(q_1, 0) = q_0, \\ &\delta(q_1, 1) = q_2, \, \delta(q_2, 0) = q_2, \, \delta(q_2, 1) = q_1 \end{split}$$

	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_1

4

Transition Graphs

A DFA can be visualized with a Transition Graph

Transition Graph of a dfa $M = (Q, \Sigma, \delta, q_0, F)$ Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_i labeled with a: transition $\delta(q_i, a) = q_i$.

The graph below represents the dfa in Example 2.1:

Processing Input with a DFA

- A DFA starts by processing the leftmost input symbol with its control in state $q_{0.}$ The transition function determines the next state, based on current state and input symbol
- The DFA continues processing input symbols until the end of the input string is reached
- The input string is *accepted* if the automaton is in a final state after the last symbol is processed. Otherwise, the string is *rejected*.
- For example, the dfa in example 2.1 accepts the string 111 but rejects the string 110

Extended Transition Function

- For a given dfa, the extended transition function δ* accepts as input a dfa state and an input string. The value of the function is the state of the automaton after the string is processed.
- Formally, the extended transition function

 $\delta^*: \mathbf{Q} \times \Sigma^* \rightarrow \mathbf{Q}$

can be recursively defined by

$$\delta^*(q,\lambda) = q$$

 $\delta^*(q,wa) = \delta(\delta^*(q,w),a)$

• Sample values of δ^* for the dfa in example 2.1, $\delta^*(q_0, 1001) = q_1$

 $\delta^*(q_1, 000) = q_0$

Languages Accepted by a DFA

The language accepted by a dfa M is the set of all strings accepted by M. More precisely, the set of all strings w such that $\delta^*(q_0, w)$ results in a final state

Definition 2.2

The language accepted by a dfa $M = (Q, \Sigma, \delta, q_0, F)$ is the set of all strings on Σ accepted by M. In formal notation

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$$

Example 2.2 M is given as below, L(M) = ?

Find a DFA to Accept a Language

Theorem 2.1 Let $M = (Q, \Sigma, \delta, q_0, F)$ a dfa, and let G_M be its associated transition graph. Then $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label *w* from q_i to q_j .

Example 2.3 Find a dfa that accepts all strings on $\Sigma = \{a, b\}$ starting with the prefix ab.

Find a DFA to Accept a Language

Example 2.4 Find a dfa that accepts all strings on $\Sigma = \{0, 1\}$, except those containing the substring 001.

Regular Languages

Definition 2.3

A language L is called regular if and only if there exists some deterministic finite accepter M such that L = L(M).

Therefore, to show that a language is regular, one must construct a DFA to accept it.

Example 2.5 Show that the language $L = \{awa : w \in \{a, b\}^*\}$ is regular.

Regular Languages

Example 2.6: Let L={ $awa : w \in \{a, b\}^*$ }. Show that L² is regular.

12