CS 4410

Automata, Computability, and Formal Language

Dr. Xuejun Liang

Chapter 1

Introduction to the Theory of Computation

- 1. Mathematical Preliminaries and Notation
 - Sets
 - Functions and Relations
 - Graphs and Trees
 - Proof Techniques
- 2. Three Basic Concepts
 - Languages
 - Grammars
 - Automata
- 3. Some Applications

Learning Objectives

At the conclusion of the chapter, the student will be able to:

- Define the three basic concepts in the theory of computation: automaton, formal language, and grammar.
- Solve exercises using mathematical techniques and notation learned in previous courses.
- Evaluate expressions involving operations on strings.
- Evaluate expressions involving operations on languages.
- Generate strings from simple grammars.
- Construct grammars to generate simple languages.
- Describe the essential components of an automaton.
- Design grammars to describe simple programming constructs.

Theory of Computation Basic Concepts

- <u>Automaton</u>: a formal construct that accepts input, produces output, may have some temporary storage, and can make decisions
- *Formal Language*: a set of sentences formed from a set of symbols according to formal rules
- <u>*Grammar*</u>: a set of rules for generating the sentences in a formal language

In addition, the theory of computation is concerned with questions of <u>computability</u> (the types of problems computers can solve in principle) and <u>complexity</u> (the types of problems that can solved in practice).

Languages (1/4)

Alphabet: nonempty set Σ of symbols, E.g. $\Sigma = \{a, b\}$ Strings: finite sequence of symbols, E.g. w = abaa, v = bbaabEmpty string: λ

Concatenation of two strings w and v: wv

 $w^n = w^{n-1} \cdot w, \ w^0 = \lambda$

Reverse of a string w: w^R Substring, Prefix, Suffix Length of a string w: |w|

$$|w| = \begin{cases} 0, & \text{if } w = \lambda \\ |u| + 1, & \text{if } w = au, a \in \Sigma \end{cases}$$

Languages (2/4)

$$|w| = \begin{cases} 0, & \text{if } w = \lambda \\ |u| + 1, & \text{if } w = au, a \in \Sigma \end{cases}$$

Example 1.8: Prove |uv| = |u| + |v|

Languages (3/4)

 $\Sigma^* = \{ all strings over \Sigma \}$ $\Sigma^+ = \Sigma^* - \{\lambda\}$

A language: a subset L of Σ^* A sentence of L: a string in L

Example 1.9: Let $\Sigma = \{a, b\}$, then $\Sigma^* = \{\lambda, a, b, ab, ba, aab, ...\}$

Languages (4/4)

Complement Reverse Concatenation $\overline{L} = \Sigma^* - L$ $L^R = \{ w^R : w \in L \}$ $L_1 L_2 = \{ xy : x \in L_1, y \in L_2 \}$ $L^n = LL \cdots L$ $L^0 = \{ \lambda \}$ $L^* = L^0 \cup L^1 \cup L^2 \cdots$ $L^+ = L^1 \cup L^2 \cdots$

Star-closure $L^* = L^0 \cup L^1 \cup L^2$ Positive closure $L^+ = L^1 \cup L^2 \cdots$

Example 1.10

$$L = \{a^{n}b^{n} : n \ge 0\}$$
$$L^{2} = ?$$
$$L^{R} = ?$$

Grammars

Definition 1.1 A grammar G is defined as a quadruple G = (V, T, S, P), where

V is a finite set of variables, T is a finite set of terminal symbols, $S \in V$ is the start variable, and P is a finite set of productions.

Production rule: $x \rightarrow y$, where $x \in (V \cup T)^+$ and $y \in (V \cup T)^*$ w derives z (z is derived from w)

• w
$$\Rightarrow_n z$$
, E.g. w = uxv and x \rightarrow y then z = uyv

•
$$w \stackrel{n}{\Longrightarrow} z$$
, $w = w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_n = z_n$

• w $\stackrel{*}{\Rightarrow}$ z, there is an n ≥ 0 such that w $\stackrel{n}{\Rightarrow}$ z

Definition 1.2 Let G=(V, T, S, P) be a grammar. Then the set $L(G)=\{w\in T^*: S \xrightarrow{*} w\}$

is the language generated by G. If $w \in L(G)$, then the sequence

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \dots \Rightarrow w_n \Rightarrow w$$

is a derivation of the sentence w. The strings S, $w_1, w_2, ..., w_n$ are called sentential forms of the derivation.

Examples

Example 1.11 $G = (\{S\}, \{a, b\}, S, P)$ with P given by

Then $L(G) = \{a^n b^n : n \ge 0\}$

Examples

Example 1.12 Find a grammar that generates $L = \{a^n b^{n+1} : n \ge 0\}$

Solution: $G = (\{S, A\}, \{a, b\}, S, P)$ $S \rightarrow A$ with productions $A \rightarrow A$

$$S \to Ab$$
$$A \to aAb$$
$$A \to \lambda$$

Examples

Example 1.13 Let $\Sigma = \{a, b\}$. The grammar G with productions

- $S \rightarrow SS$, generates the language
- $S \rightarrow \lambda$, $L = \{ w \in \Sigma^* : w \text{ contains equal numbers of a's and b's} \}$
- $S \rightarrow aSb$,
- $S \rightarrow bSa$,

Equivalent Grammars

Two grammars G_1 and G_2 are equivalent if they generate the same languages, that is, $L(G_1)=L(G_2)$.

Example 1.14 $G_1 = (\{S\}, \{a, b\}, S, P_1)$ with P_1 given by

 $S \to aAb \mid \lambda$ $A \to aAb \mid \lambda$

Then $L(G_1) = \{a^n b^n : n \ge 0\}$

So G_1 is equivalent to G in Example 1.11

Automata (1/2)

- An *automaton* is an abstract model of a digital computer
- An automaton consists of
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - Possibly, an output mechanism
- Control unit can be in any number of internal *states*, as determined by a *next-state* or *transition* function

Automata (2/2)

• Nondeterministic automata

Some Applications (1/2)

Compiler (scanner and parser) design and Digital circuit design Example 1.15 Identifiers as a language generated by a grammar (Identifiers: Strings of letters and digits starting with a letter)

Example 1.16 Identifiers accepted by an automaton

Some Applications (2/2)

Example 1.17 Serial binary adder

