
1

Automata, Computability, and

Formal Language

CS 4410

Dr. Xuejun Liang

2

Chapter 1

Introduction to the Theory of Computation

1. Mathematical Preliminaries and Notation
• Sets

• Functions and Relations

• Graphs and Trees

• Proof Techniques

2. Three Basic Concepts
• Languages

• Grammars

• Automata

3. Some Applications

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Define the three basic concepts in the theory of
computation: automaton, formal language, and grammar.

• Solve exercises using mathematical techniques and notation
learned in previous courses.

• Evaluate expressions involving operations on strings.

• Evaluate expressions involving operations on languages.

• Generate strings from simple grammars.

• Construct grammars to generate simple languages.

• Describe the essential components of an automaton.

• Design grammars to describe simple programming
constructs.

Theory of Computation
Basic Concepts

• Automaton: a formal construct that accepts input, produces

output, may have some temporary storage, and can make

decisions

• Formal Language: a set of sentences formed from a set of

symbols according to formal rules

• Grammar: a set of rules for generating the sentences in a

formal language

In addition, the theory of computation is concerned with

questions of computability (the types of problems computers

can solve in principle) and complexity (the types of problems

that can solved in practice).

5

Languages (1/4)

Alphabet: nonempty set of symbols, E.g. ={a, b}

Strings: finite sequence of symbols, E.g. w = abaa, v = bbaab

Empty string:

Concatenation of two strings w and v: wv

Reverse of a string w: wR

Substring, Prefix, Suffix

Length of a string w: |w|

|𝑤| = ቊ
0, if 𝑤 = 𝜆

|𝑢| + 1, if 𝑤 = 𝑎𝑢, 𝑎 ∈ Σ

𝑤𝑛 = 𝑤𝑛−1 ⋅ 𝑤, 𝑤0 = 𝜆

6

Languages (2/4)

Example 1.8: Prove |uv| = |u| + |v|

|𝑤| = ቊ
0, if 𝑤 = 𝜆

|𝑢| + 1, if 𝑤 = 𝑎𝑢, 𝑎 ∈ Σ

7

Languages (3/4)

* = {all strings over }

+ = * - {}

Example 1.9: Let ={a,b}, then *={, a, b, ab, ba, aab,…}

A language: a subset L of *

A sentence of L: a string in L

8

Languages (4/4)

=

=

=

=

=

=

−=

+ 21

210*

0

2121

*

}{

},:{

}:{

LLL

LLLL

L

LLLL

LyLxxyLL

LwwL

LL

n

RR

Complement

Reverse

Concatenation

Star-closure

Positive closure

?

?

}0:{

2

=

=

=

R

nn

L

L

nbaLExample 1.10

9

Grammars
Definition 1.1 A grammar G is defined as a quadruple

G = (V, T, S, P), where

V is a finite set of variables, T is a finite set of terminal symbols,

S V is the start variable, and P is a finite set of productions.

Definition 1.2 Let G=(V, T, S, P) be a grammar. Then the set

L(G)={wT*: S w}

is the language generated by G. If w L(G), then the sequence

S w1 w2 … wn w

is a derivation of the sentence w. The strings S, w1, w2, …, wn are

called sentential forms of the derivation.

Production rule: x → y, where x (VT)+ and y(VT)*

w derives z (z is derived from w)

• w z, E.g. w = uxv and x→y then z = uyv

• w z, w = w1 w2 … wn = z

• w z, there is an n0 such that w z

n

n

Examples

),},,{},({ PSbaSG =
→

→

S

aSbS
Example 1.11 with P given by

Then }0:{)(= nbaGL nn

11

Examples
Example 1.12 Find a grammar that generates }0:{ 1 = + nbaL nn

),},,{},,({ PSbaASG =

with productions
→

→

→

A

aAbA

AbSSolution:

12

Examples
Example 1.13 Let ={a, b}. The grammar G with productions

,

,

,

,

bSaS

aSbS

S

SSS

→

→

→

→

generates the language

L={w *: w contains equal numbers of a’s and b’s}

13

Equivalent Grammars

Example 1.14

Two grammars G1 and G2 are equivalent if they

generate the same languages, that is, L(G1)=L(G2).

),},,{},({ 11 PSbaSG =

|

|

aAbA

aAbS

→

→

with P1 given by

Then }0:{)(1 = nbaGL nn

So G1 is equivalent to G in Example 1.11

14

Automata (1/2)

Control unit

Input file

Output Storage

• An automaton is an abstract

model of a digital computer

• An automaton consists of

• An input mechanism

• A control unit

• Possibly, a storage mechanism

• Possibly, an output mechanism

• Control unit can be in any

number of internal states, as

determined by a next-state or

transition function

15

Automata (2/2)

Control unit

Input file

Output Storage

• Some terms

• Internal states

• Next-state or transition function

• Configuration

• Move

• Deterministic automata

• Nondeterministic automata

• Accepter

• Transducer

16

Some Applications (1/2)

Example 1.15 Identifiers as a language generated by a grammar

(Identifiers: Strings of letters and digits starting with a letter)

<id> → <letter> <rest>

<rest> → <letter> <rest> | <digit> <rest> |

<letter> → a | b | …| z | A | B | … | Z

<digit> → 0 | 1 | … | 9

Compiler (scanner and parser) design and Digital circuit design

Example 1.16 Identifiers accepted by an automaton

1 2

3

Letter or digit

Letter or digit

Digit

Letter

17

Some Applications (2/2)
Example 1.17 Serial binary adder

x = anan-1…a1a0 and y = bnbn-1…b1b0

z = x + y = dndn-1…d1d0

Serial adder
di

ai

bi

Carry

No carry

(0,0)/0
(0,1)/1

(1,0)/1 (0,1)/0

Carry

(1,0)/0
(1,1)/1

(1,1)/0

(0,0)/1

