California State University Stanislaus Department of Computer Science Syllabus

Instructor: Dr. Xuejun Liang

My Office: DBH 282

Office Hours: MWF 10:00AM-11:00AM (ZOOM Meeting ID 4438930033)

Phone: (209) 667-3169, Email: xliang@csustan.edu

Class Information:

Classroom: Bizzini 233

Class Days & Times: MWF 11:00AM-11:50AM

Class Website: https://www.cs.csustan.edu/~xliang/Courses2/CS4410-23S

Catalog Description:

CS4410 Automata, Computability, and Formal Language. (3 units) Pre-requisites: CS 3100 and MATH 2300. Finite state concepts; sequential machines and state minimization; Chomsky grammar; algorithms on grammars; computability and Turing machines; non-computable functions.

Textbook:

<u>An Introduction to Formal Languages and Automata</u>, Sixth Edition, by Peter Linz, Jones & Bartlett Learning, 2017, ISBN: 978-1-284-07724-7.

JFLAP:

JFLAP is a package of graphical tools which can be used as an aid in learning the basic concepts of Formal Languages and Automata Theory.

Course Outcomes

Students who successfully complete the course should be able to

- 1. Define the three basic concepts in the theory of computation: automaton, formal language, and grammar and perform related operations.
- 2. Construct a finite state machine (DFA and NFA) and the equivalent regular expression and regular grammar, transform an arbitrary NFA to an equivalent DFA, and apply the pumping lemma to show that a language is not regular.
- 3. Construct pushdown automata and the equivalent context-free grammars, construct derivation trees for strings generated by a context-free grammar, show that a context-free grammar is ambiguous, rewrite a grammar to remove ambiguity, simplify context-free grammars, transform a context-free grammar into an equivalent grammar in Chomsky normal form, and apply the pumping lemma to show that a language is not context-free.
- 4. Construct a Turing machine to accept a specific language or to compute a simple function, and state Turing's thesis and discuss the circumstantial evidence supporting it.
- 5. Describe the structure and components of the Chomsky hierarchy.
- 6. Understand limits of algorithmic computations and have a basic understanding of the complexity classes P and NP, and concepts of intractability and NP-completeness.

Course Outline* (Major Topics and Weekly Schedule)

Date	Tonics Covered			
Week 1: 01/26	Topics Covered			
	Class introduction and syllabus			
Week 2:	Introduction to the theory of computation: Mathematical preliminaries			
01/30, 02/01, 02/03				
	Automata. Some applications.			
Week 3:	Deterministic Finite Accepters (DFA): Deterministic Accepters and			
02/06, 02/08, 02/10	Transition Graphs, Languages and DFAs, and Regular Language.			
Week 4:	Nondeterministic Finite Accepters, Equivalence of Deterministic and			
02/13, 02/15, 2/17	Nondeterministic Finite Accepters			
	Test #1 (Chapter 1 and 2)			
Week 5:	Regular expressions, Connection Between Regular Expressions and			
02/20, 02/22, 2/24	Regular Languages			
Week 6:	Regular Grammars. Closure Properties of Regular Languages,			
02/27, 03/01, 03/03	Elementary Questions about Regular Languages			
Week 7:	Identifying Nonregular Languages using pumping Lemma			
03/06, 03/08, 03/10	Test #2 (Chapter 3 and 4)			
Week 8:	Context-free languages and Context-free grammars.			
03/13, 03/15, 03/17				
	productions, unit-productions, and useless productions			
Week 9:	Two Normal forms: Chomsky and Greibach.			
03/20, 03/22, 03/24	Nondeterministic Pushdown Automata and Context-Free Languages			
Week 10:	Deterministic Pushdown Automata			
03/27, 03/29	Test #3 (Chapter 5, 6, and 7)			
	Spring Break			
Week 11:	Properties of Context-Free Languages: Two Pumping Lemmas and			
04/10, 04/12, 04/14	Closure of Context-Free Languages			
Week 12:	Standard Turing machines, Linear Bounded Automata, universal			
04/17, 04/19, 04/21	Turing Machine.			
Week 13:	Other Models of Turing machines			
04/24, 04/26, 04/28	Test #4 (Chapter 8, 9, and 10)			
Week 14:	A hierarchy of formal languages and automata.			
05/01, 05/03, 05/05	Introduction to computability: The limits of algorithms			
Week 15:	Introduction to complexity theory.			
05/08, 05/10, 05/12	Test #5 (Chapter 11, 12, and 14)			
Week 16: 05/15	Review for the Final			
Week 16-17	Final Examination Schedule			
** CCK 10-1/	https://www.csustan.edu/class-schedule/finals-schedule			
	https://www.csustan.cuu/ciass-schedule/finals-schedule			

^{*}It is subject to change.

Grading Scale

Grading scale will be assigned on a standard scale as below.

A	В	С	D	F
90-100	75-89	60-74	45-59	<45

Clustering of grades may cause the grading scale to be lowered (to your benefit), but it will not be raised.

Evaluation:

The overall course grade will be the weighted sum of the points earned in the following categories:

Attendance	Homework	Tests	Final Exam
10%	25%	35%	30%

Other Polices:

- 1. I will accept the late homework assignments for maximum three days (including holidays) with the point deduction 20% per day.
- 2. There will be no makeup tests except in a verified emergency with immediate notification.

Academic Honesty:

The work you do for this course will be your own, unless otherwise specified. You are not to submit other people's or machine's work and represent it as your own. I consider academic honesty to be at the core of the University's activities in education and research. Academic honesty is always expected in this course.

Accommodations for Students with Disabilities

Students with disabilities seeking academic accommodations must first register with the Disability Resource Services (DRS) program, located in MSR 210, ph. (209) 667-3159. Students are encouraged to talk with the instructor regarding their accommodation needs after registering with DRS.