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Chapter 10
Other Models of Turing Machines

1. Minor Variations on the Turing Machine Theme
• Equivalence of Classes of Automata

• Turing Machine with a Stay-Option 

• Turing Machine with Semi-Infinite Tape

• The Off-Line Turing Machine

2. Turing Machines with More Complex Storage
• Multitape Turing Machines

• Multidimensional Turing Machine

3. Nondeterministic Turing Machines

4. A Universal Turing Machine

5. Linear Bounded Automata



Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Explain the concept of equivalence between classes of automata

• Describe how a Turing machine with a stay-option can be simulated by 

a standard Turing machine

• Describe how a standard Turing machine can be simulated by a machine 

with a semi-infinite tape

• Describe how off-line and multidimensional Turing machines can be 

simulated by standard Turing machines

• Construct two-tape Turing machines to accept simple languages

• Describe the operation of nondeterministic Turing machines and their 

relationship to deterministic Turing machines

• Describe the components of a universal Turing machine

• Describe the operation of linear bounded automata and their relationship 

to standard Turing machines
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Equivalence of Classes of Automata

Definition 10.1: Two automata are equivalent if they accept the same

language. Consider two classes of automata C1 and C2. If for every 

automaton M1 in C1. There is an automaton M2 in C2 such that

L(M1) = L(M2)

we say that C2 is at least as powerful as C1. If the converse also holds

and for every M2 in C2 there is an M1 in C1 such that L(M1)=L(M2), we

say that C1 and C2 are equivalent.

Theorem 10.1: The class of Turing machines with stay-option is equivalent

to the class of standard Turing machine

Turing machines with stay-option: : Q→Q{L, R, S}

Idea of the equivalence proof: 

Use one machine to simulate another machine
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Turing Machines with Semi-infinite Tape

Turing machines with multiple tracks

Track 1

Track 2

Track 3

a

b
c

Turing machines with semi-infinite tape
Have a left boundary

No left move at the left boundary 

Simulate standard Turing machines

Track 1 for right part of standard tape

Track 2 for left part of standard tape

Reference point

b a b
a#

#
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The Off-Line Turing Machine

a b c d

e f g

Control Unit

Read-only input file

a    b       c      d

0    0       1      0

e     f       g

0     1       0

Control Unit
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Multitape Turing Machines
: Qn 

→Qn{L, R}n

q0

a b c d e fTape 1

Tape 2

An example (n=2)

(q0,a,e) = 

(q1, x, y, L, R)

Transition function

q1

x b c e y fTape 1

Tape 2
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Simulate a Two-Tape Machine

q

a b c e f gd b

a    b       c      d

0    1       0      0

e     f       g      b

0     0       1     0

q
Example 10.1: Two-tape

machine that accepts the

language {anbn: n>0}
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Multidimensional Turing Machine

: Q→Q{L, R, U, R}

Transition function of a two-dimensional Turing machine 

1, -1    1, 1      1, 2 

1, -1

a                               b

1      #      2       #      1     0      #      - 3     #

Simulate two-dimensional Turing machine 
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Nondeterministic Turing Machines

Definition 10.2: A nondeterministic Turing machine is an automaton as 

Given by Definition 9.1, except that  is now a function

},{2: RLQQ →

Example 10.2: If a Turing machine has transitions specified by

(q0,a)={(q1, b, R), (q2, c, L)},

it is nondeterministic.

Theorem 10.2: The class of deterministic Turing machines and the class

of nondeterministic Turing machine are equivalent

Simulation of a 

nondeterministic

move

#   #   #   #  #

#   a   a   a   #

#   q0 #

#   #   #   #  # 

#   #   #   #   #  #

#        b   a   a   #

#             q1 # 

#        c   a   a   #

#   q2 #

#   #   #   #   #  # 



A Universal Turing Machine

• A universal Turing machine is a reprogrammable Turing machine 

which, given as input the description of a Turing machine M and a 

string w, can simulate the computation of M on w

• A universal Turing machine has the structure of a multitape machine, 

as shown in Figure 10.16
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A Universal Turing Machine (Cont.)

Definition 10.4: Let S be a set of strings on some alphabet . Then an

enumeration procedure for S is a Turing machine that can carry out the

sequence of steps

q0 qsx1 # s1 qsx2 # s2

with xi *−{#}, si  S, in such a way that any s in S is produced in a 

finite number steps. The state qs is a state signifying membership in S;

that is, whenever qs is entered, the string following # must be in S.

|−
*

|−
*

Example 10.3: Let ={a, b, c}. Then S= + is countable.

Theorem 10.3: The set of all Turing machines, though infinite, is 

countable.

Encoding of a Turing machine

Countable and Uncountable Infinite. 

Example: {p/q : p, q are possible integer}  



Linear Bounded Automata

• The power of a standard Turing machine can be restricted by limiting the 

area of the tape that can be used

• A linear bounded automaton is a Turing machine that restricts the usable 

part of the tape to exactly the cells used by the input

• Linear bounded automata are assumed to be nondeterministic and accept 

languages in the same manner as other Turing machine accepters

• It can be shown that any context-free language can be accepted by a 

linear bounded automaton

• In addition, linear bounded automata can be designed to accept 

languages which are not context-free, such as L = { anbncn: n ≥ 1}

• Finally, linear bounded automata are not as powerful as standard Turing 

machines
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Linear Bounded Automata (Cont.)

Definition 10.5: A linear bounded automaton is a Turing machine M=

(Q, , , , q0, , F), as in Definition 10.2, subject to the restriction that

 must contain two special symbols [ and ], such that (qi, [) can contain 

only elements of the form (qj, [, R), and (qi, ]) can contain only elements 

of the form (qj, ], L). 

Definition 10.6: A string is accepted by a linear bounded automaton if 

there is a possible sequence of moves

q0[w]     [x1qf x2]

for some qf  F, x1, x2  *. The language accepted by the lba is the set

of all such accepted strings.

|−
*

Example 10.4: The language L={anbncn : n1} is accepted by some

linear bounded automaton.

Example 10.5: Find a linear bounded automaton that accepts the

language L={an! : n0}.


