
1

Automata, Computability, and

Formal Language

CS 4410

Dr. Xuejun Liang

Spring 2019

2

Chapter 1

Introduction to the Theory of Computation

1. Mathematical Preliminaries and Notation
• Sets

• Functions and Relations

• Graphs and Trees

• Proof Techniques

2. Three Basic Concepts
• Languages

• Grammars

• Automata

3. Some Applications

Learning Objectives
At the conclusion of the chapter, the student will be able to:

• Define the three basic concepts in the theory of
computation: automaton, formal language, and grammar.

• Solve exercises using mathematical techniques and notation
learned in previous courses.

• Evaluate expressions involving operations on strings.

• Evaluate expressions involving operations on languages.

• Generate strings from simple grammars.

• Construct grammars to generate simple languages.

• Describe the essential components of an automaton.

• Design grammars to describe simple programming
constructs.

4

Sets
Representations

S={0, 1, 2}

S={i : i>0, i is even}

Empty set: 

Operations
Union () : S1  S2 ={x : x S1or x S2}

Intersection () : S1  S2 ={x : x S1and x S2}

Difference (-) : S1 - S2 ={x : x S1and x S2}

Complement : ={x : xU and x S}S

Subset: S1 S2

Proper subset: S1 S2

Power set: (S) = {A : AS}

Cartesian product: S1 S2={(x,y): x S1and y S2}

Example 1.1 on p5 Example 1.2 on p5

5

Functions and Relations

Function f: X →Y, y = f(x), xX

Given two functions f and g defined on the positive integers,
if there is a positive constant c such that for all n, f(n)  cg(n),

f is said to has order of at most g, denoted by f(n) = O(g(n)).

if |f(n)|  c|g(n)|, f is said to has order of at least g, denoted by

f(n) = (g(n)),

Finally, if there exist constants c1 and c2 such that

c1|g(n)|  |f(n)|  c2|g(n)|, f and g are said to have the same order of

magnitude, denoted by f(n) = (g(n))

Relation R  XY, (x,y)  R (or x R y)

Equivalence relation  on X (  XX), if it satisfies three rules:
1. Reflexive: x  x for all x

2. Symmetric: x  y then y  x

3. Transitive: x  y and y z then x z.

6

Functions and Relations

10010)(

,)(

,32)(

2

3

2

+=

=

+=

nnh

nng

nnnf

))(()(

)),(()(

)),(()(

nhnf

nhng

ngnf

=

=

=

x  y if and only if x mod 3 = y mod 3

Then  is an equivalence relation

Example 1.3 on p7

Example 1.4 on p8

7

Graphs and Trees

G = (V, E), where V={v1, v2,…,vn} and E={e1, e2,..,em}

v1 v2 v3

In directed graph
ei = (vj, vk)

vj is a parent of vk

vk is a child of vj

In undirected graph
ei = {vj, vk}

A walk from vi to vn: a sequence of edges (vi, vj), (vj, vk),… (vm, vn).

The length of a walk is the number of edges in the walk.

A path is a walk in which no edge is repeated.

A path is simple if no vertex is repeated.

A cycle with base vi is a path from vi to vi.

A loop is an edge from a vertex to itself.

8

Graphs and Trees

A tree is a directed graph that has no cycles, and has one distinct vertex,

called the root, such that there is exactly one path from the root to every

other vertices.

Leaf

vertex without outgoing

edges

Level of a vertex

The number of edges in

the path from the root to the

vertex

Height of a tree

The largest level number

of any vertex

Root

Level 0

Level 3

Height = 3

Leaf

9

Proof Techniques
Proof by induction

Want to prove P(n) is true for all positive integer n

Three steps of proof:

1. Basis: Verify P(1) is true

2. Induction hypothesis: Assume P(k) (or P(2), …, P(k)) is true

3. Induction proof: Prove P(k+1) is true

Example 1.5: Prove that a binary tree of height n has at most 2n leaves


=

+
==

n

i

n

nn
iS

1 2

)1(
Example 1.6: Show that

Proof by contradiction
Want to prove P is true.

Assume P is false, and leads to an incorrect conclusion.

So P cannot be false. That is, P is true.

Example 1.7: Show that is an irrational number.2

Theory of Computation
Basic Concepts

• Automaton: a formal construct that accepts input, produces

output, may have some temporary storage, and can make

decisions

• Formal Language: a set of sentences formed from a set of

symbols according to formal rules

• Grammar: a set of rules for generating the sentences in a

formal language

In addition, the theory of computation is concerned with

questions of computability (the types of problems computers

can solve in principle) and complexity (the types of problems

that can solved in practice).

11

Languages

Alphabet: nonempty set  of symbols, E.g. ={a, b}

Strings: finite sequence of symbols, E.g. w = abaaa, v = bbaab

Empty string: 

Concatenation of two strings w and v: wv,

Reverse of a string w: wR

Length of a string w: |w|

Substring, Prefix, Suffix

* = {all strings over }

+ = * - {}

A language: a subset L of *

A sentence of L: a string in L





=+

=
=

au, awu

w
w

 if ,1||

 if ,0
||



Example 1.8: Prove |uv| = |u| + |v|

Example 1.9: Let ={a,b}, then *={, a, b, ab, ba, aab,…}

== 0 , wwwwwn

12

Languages

Alphabet: nonempty set  of symbols, E.g. ={a, b}

Strings: finite sequence of symbols, E.g. w = abaaa, v = bbaab

Empty string: 

Concatenation of two strings w and v: wv,

Reverse of a string w: wR

Length of a string w: |w|

Substring, Prefix, Suffix

* = {all strings over }

+ = * - {}

A language: a subset L of *

A sentence of L: a string in L





=+

=
=

au, awu

w
w

 if ,1||

 if ,0
||



Example 1.8: Prove |uv| = |u| + |v|

Example 1.9: Let ={a,b}, then *={, a, b, ab, ba, aab,…}

== 0 , wwwwwn

13

Languages

=

=

=

=

=

=

−=

+ 21

210*

0

2121

*

}{

},:{

}:{

LLL

LLLL

L

LLLL

LyLxxyLL

LwwL

LL

n

RR



Complement

Reverse

Concatenation

Star-closure

Positive closure

?

?

}0:{

2

=

=

=

R

nn

L

L

nbaLExample 1.10

14

Grammars
Definition 1.1 A grammar G is defined as a quadruple

G = (V, T, S, P), where

V is a finite set of variables, T is a finite set of terminal symbols,

S  V is the start variable, and P is a finite set of productions.

Definition 1.2 Let G=(V, T, S, P) be a grammar. Then the set

L(G)={wT*: S w}

is the language generated by G. If w  L(G), then the sequence

S  w1  w2  …  wn  w

is a derivation of the sentence w. The strings S, w1, w2, …, wn are

called sentential forms of the derivation.



Production rule: x → y, where x (VT)+ and y(VT)*

w derives z (z is derived from w)

• w  z, E.g. w = uxv and x→y then z = uyv

• w z, w = w1  w2  …  wn = z

• w z, there is an n0 such that w z

n


n

15

Examples
),},,{},({ PSbaSG =

→

→

S

aSbS
Example 1.11 with P given by

Then }0:{)(= nbaGL nn

Example 1.12 Find a grammar that generates }0:{ 1 = + nbaL nn

),},,{},,({ PSbaASG =

with products
→

→

→

A

aAbA

AbSSolution:

Example 1.13 Let ={a, b}. The grammar G with productions

,

,

,

,

bSaS

aSbS

S

SSS

→

→

→

→



generates the language

L={w *: w contains equal numbers of a’s and b’s}

16

Examples

Example 1.14

Two grammars G1 and G2 are equivalent if they

generate the same languages, that is, L(G1)=L(G2).

),},,{},({ 11 PSbaSG =





|

|

aAbA

aAbS

→

→

with P1 given by

Then }0:{)(1 = nbaGL nn

So G1 is equivalent to G in Example 1.11

17

Automata

Control unit

Input file

Output Storage

Some terms
• Internal states

• Next-state or transition function

• Configuration

• Move

Deterministic automata

Nondeterministic automata

Accepter

Transducer

18

Some Applications

Example 1.15 Identifiers as a language generated by a grammar

(Identifiers: Strings of letters and digits starting with a letter)

<id> → <letter> <rest>

<rest> → <letter> <rest> | <digit> <rest> | 
<letter> → a | b | …| z

<digit> → 0 | 1 | …|9

Compiler (parser) design and Digital circuit design

Example 1.16 Identifiers accepted by an automaton

1 2

3

Letter or digit

Letter or digit

Digit

Letter

19

Some Applications
Example 1.17 Serial binary adder

x = anan-1…a1a0 and y = bnbn-1…b1b0

z = x + y = dndn-1…d1d0

Serial adder
di

ai

bi

Carry

No carry

(0,0)/0
(0,1)/1

(1,0)/1 (0,1)/0

Carry

(1,0)/0
(1,1)/1

(1,1)/0

(0,0)/1

