California State University Stanislaus Department of Computer Science Syllabus

Instructor: Dr. Xuejun Liang My Office: DBH 282 Office Hours: MWF 1:00 p.m. - 2:00 p.m. Phone : (209) 667-3169, Email : <u>xliang@cs.csustan.edu</u>

Class Information:

Classroom: DBH 103 Class Date & Time: TR 2:00 p.m. – 3:15 p.m. Class Website: <u>https://www.cs.csustan.edu/~xliang/Courses2/CS4300-22F</u> Class Server: wozniak.csustan.edu (You can use PuTTY to remote login.)

Catalog Description:

CS4300 Compiler Theory. (3 Units) Pre-requisites: CS 4100. Lexical, syntactic, and semantic analyses and syntax directed translation of programming languages. Includes symbol table construction, error diagnostics, and code generation.

Required Textbook:

Compilers: Principles, Techniques, & Tools, 2/E, by Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman, Addison Wesley, 2007. ISBN: 9-780-321-486-813

Reference Books:

- 1. Compiler Construction: Principles and Practice, by Kenneth C. Louden, PWS Publishing Company, 1997
- 2. flex & bison: Text Processing Tools, by John Levine, O'Reilly Media, Inc., 2009
- 3. Modern Compiler Implementation in Java, 2/E, by Andrew W. Appel and Jens Palsberg, Cambridge University Press, 2002
- 4. Modern Compiler Implementation in C, by Andrew W. Appel and Maia Ginsburg, Cambridge University Press, 2004
- 5. Advanced Compiler Design and Implementation, by Muchnick Steven, Morgan Kaufmann, 2008
- 6. Engineering a Compiler, 2nd Edition, by Keith Cooper and Linda Torczon, Addison Wesley, 2011

Handouts: (Available on Class Website)

- 1. Cool Reference Manual
- 2. Tour of Cool Support Code
- 3. Cool Runtime System

Reference Materials: (Available on Class Website)

- 4. <u>Bison manual</u>
- 5. Java CUP manual

Course Outcomes:

Students who successfully complete the course must be able to

- 1. Build a compiler for a (simplified) programming language
- 2. Utilize compiler construction tools, such as generators of scanners and parsers
- 3. Apply algorithms for lexical analysis
- 4. Apply algorithms for LL(1), LR(1), and LALR(1) parsing
- 5. Select an intermediate representation, translate expressions, and check types.
- 6. Describe how the compiler create and manage a run-time environment to support execution of its target programs.
- 7. Describe how the code generator perform instruction selection, register allocation and assignment, and instruction ordering.

Course Outline* (Major Topics and Weekly Schedule)

Date	Topics Covered				
Week 1 8/23 8/25	Syllabus and Introduction of the class, The Structure of a Compiler, The Science of Building a Compiler, Compiler Technology, and Programming				
0/23, 0/25	Language Basics.				
Week 2	Introduction to Compiler Frontend: Syntax Definition, Syntax-Directed				
9/30, 9/1	Translation, and Parsing.				
Week 3	Introduction to Compiler Frontend: A Translator for Simple Expressions,				
9/6, 9/8	Lexical Analysis, Symbol Tables, and Intermediate Code Generation				
	COOL to prepare for PA1				
Week 4	Lexical Analysis: Specification of Tokens, Recognition of Tokens, and	Ch3			
9/13, 9/15	Lexical-Analyzer Generator: Lex and Flex.				
Week 5	Lexical Analysis: Finite Automata, From Regular Expressions to Automata,	Ch3			
9/20, 9/22	Construct an NFA from a Lex Program, and From RE to DFA Directly				
	Using lex/flex to prepare for PA2				
Week 6	Syntax Analysis: Context-Free Grammars, Writing a Grammar, Top-Down	Ch 4			
9/27, 9/29	Parsing, and Bottom-Up Parsing				
Week 7	Syntax Analysis: Simple LR and More Powerful LR Parsers.	Ch4			
10/4, 10/4	Midterm Exam				
Week 8:	Syntax Analysis: Using Ambiguous Grammars, Parser Generators	Ch4			
10/11, 10/13	Using yacc/bision to prepare for PA3				
Week 9	Syntax-Directed Translation: Syntax-Directed Definitions and Evaluation	Ch5			
10/18, 10/20	Orders for SDD's				
Week 10	Syntax-Directed Translation: Applications of Syntax-Directed Translation	Ch5			
10/25, 10/27	and Syntax-Directed Translation Schemes.				
Week 11	Semantic Analysis: Types and Declarations and Type Checking	Ch6			
11/1, 11/3	Intermediate-Code Generation: Variants of Syntax Trees, Three-Address				
	Code				
Week 12	Intermediate-Code Generation: Translation of Expressions, Control Flow,	Ch6			
11/8, 11/10	and Backpatching				
Week 13	Run-Time Environments: Storage Organization, Stack Allocation of Space.	Ch7			
11/15, 11/17	and Access to Nonlocal Data on the Stack				
	Thanksgiving				

Week 14	Code Generation: Issues in the Design of a Code Generator, The Target	Ch8		
11/29, 12/1	Language, and Addresses in the Target Code			
Week 15	Code Generation: Basic Blocks and Flow Graphs	Ch8		
12/6, 12/8	Review for the Final Exam			
Week 16	Final Examination			
12/13	Day: Tuesday, December 13 and Time: 2:00 p.m4:00 p.m.			
	Fall 2022 Finals Schedule			
	https://www.csustan.edu/class-schedule/finals-schedule/fall			

*It is subject to change.

Grading Scale will be assigned on a standard scale as below

A	B	С	D	F
90-100	75-89	60-74	45-59	<45

Clustering of grades may cause the grading scale to be lowered (to your benefit), but it will not be raised

Evaluation:

The overall course grade will be the weighted sum of the points earned in the following categories:

Participation	Homework	Projects	Midterm Exam	Final Exam
10%	20%	15%	25%	30%

Other Polices:

- 1. I will accept the late assignments for maximum three days (including holidays) with the point deduction 20% per day.
- 2. There will be no makeup exams except in a verified emergency with immediate notification.

Academic Honesty:

The work you do for this course will be your own, unless otherwise specified. You are not to submit other people's work and represent it as your own. I consider academic honesty to be at the core of the University's activities in education and research. Academic honesty is expected at all times in this course.

Accommodations for Students with Disabilities

Students with disabilities seeking academic accommodations must first register with the Disability Resource Services (DRS) program, located in MSR 210, ph. (209) 667-3159. Students are encouraged to talk with the instructor regarding their accommodation needs after registering with DRS.