
CS 4300 Compiler Theory

Programming Assignment II
Due Thursday, Oct. 20 at Midnight

1. Overview of the Programming Project

Programming assignments II–V (We will skip PA IV and PA V) will direct you to design and build a
compiler for Cool. Each assignment will cover one component of the compiler: lexical analysis, parsing,
semantic analysis, and code generation. Each assignment will ultimately result in a working compiler
phase which can interface with other phases. You will have an option of doing your projects in C++ or
Java.

For this assignment, you are to write a lexical analyzer, also called a lexer, or a scanner, using a lexical
analyzer generator. (The C++ tool is called flex; the Java tool is called jlex.) You will describe the set of
tokens for Cool in an appropriate input format, and the analyzer generator will generate the actual code
(C++ or Java) for recognizing tokens in Cool programs.

Please check the class webpage for the reference materials. This includes manuals for flex and jlex (used
in this assignment), the manuals for bison and java_cup (used in the next assignment), as well as the
manual for the SPIM simulator.

2. Introduction to Flex/JLex

Flex allows you to implement a lexical analyzer by writing rules that match on user-defined regular
expressions and performing a specified action for each matched pattern. Flex compiles your rule file
(e.g.,“lexer.l”) to C (or, if you are using JLex, Java) source code implementing a finite automaton
recognizing the regular expressions that you specify in your rule file. Fortunately, it is not necessary to
understand or even look at the automatically generated (and often very messy) file implementing your
rules.

Rule files in Flex are structured as follows:

%{
Declarations
%}
Definitions
%%
Rules
%%
User subroutines

The Declarations and User subroutines sections are optional and allow you to write declarations and
helper functions in C (or for JLex, Java). The Definitions section is also optional, but often very useful as
definitions allow you to give names to regular expressions. For example, the definition

DIGIT [0-9]

allows you to define a digit. Here, DIGIT is the name given to the regular expression matching any single
character between 0 and 9. The following table gives an overview of the common regular expressions
that can be specified in Flex:

CS 4300 Compiler Theory

x the character ”x”
"x" an ”x”, even if x is an operator.
\x an ”x”, even if x is an operator.
[xy] the character x or y.
[x-z] the characters x, y or z.
[^x] any character but x.
 . any character but newline.
^x an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x* 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
x|y an x or a y.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from the definitions section.
x{m,n} m through n occurrences of x

The most important part of your lexical analyzer is the rules section. A rule in Flex specifies an action to
perform if the input matches the regular expression or definition at the beginning of the rule. The action
to perform is specified by writing regular C (or Java) source code. For example, assuming that a digit
represents a token in our language (note that this is not the case in Cool), the rule:

{DIGIT} {
 yylval.symbol = inttable.add_string(yytext);
 return DIGIT_TOKEN;

}

records the value of the digit in the global variable yylval and returns the appropriate token code.

An important point to remember is that if the current input (i.e., the result of the function call to yylex())
matches multiple rules, Flex picks the rule that matches the largest number of characters. For instance,
if you define the following two rules

[0-9]+ { // action 1}
[0-9a-z]+ { // action 2}

and if the character sequence 2a appears next in the file being scanned, then action 2 will be performed
since the second rule matches more characters than the first rule. If multiple rules match the same
number of characters, then the rule appearing first in the file is chosen.

When writing rules in Flex, it may be necessary to perform different actions depending on previously
encountered tokens. For example, when processing a closing comment token, you might be interested
in knowing whether an opening comment was previously encountered. One obvious way to track state
is to declare global variables in your declaration section, which are set to true when certain tokens of
interest are encountered. Flex also provides syntactic sugar for achieving similar functionality by using
state declarations such as:

%x COMMENT

which can be set to true by writing BEGIN(COMMENT). To perform an action only if an opening
comment was previously encountered, you can predicate your rule on COMMENT using the syntax:

CS 4300 Compiler Theory

<COMMENT> {
 // the rest of your rule ...

}

There is also a special default state called INITIAL which is active unless you explicitly indicate the
beginning of a new state. You might find this syntax useful for various aspects of this assignment, such
as error reporting. We strongly encourage you to read the documentation on Lex written by Lesk and
Schmidt linked from the class webpage before writing your own lexical analyzer.

3. Files and Directories

To get started, create a directory where you want to do the assignment, for example, PA2, and execute
one of the following commands in that directory. For the C++ version of the assignment, you should type

 $ make -f /home/CS4300/assignments/PA2/Makefile

For Java, type:

 $ make -f / home/CS4300/assignments/PA2J/Makefile

(notice the “J” in the path name). This command will copy a number of files to your directory. Some of
the files will be copied read-only (using symbolic links). You should not edit these files. In fact, if you
modify private copies of these files, you may find it impossible to complete the assignment. See the
instructions in the README file. The files that you will need to modify are:

• cool.flex (in the C++ version) / cool.lex (in the Java version)

This file contains a skeleton for a lexical description for Cool. There are comments indicating where
you need to fill in code, but this is not necessarily a complete guide. Part of the assignment is for you
to make sure that you have a correct and working lexer. Except for the sections indicated, you are
welcome to make modifications to our skeleton. You can actually build a scanner with the skeleton
description, but it does not do much. You should read the flex/jlex manual to figure out what this
description does do. Any auxiliary routines that you wish to write should be added directly to this
file in the appropriate section (see comments in the file).

• test.cl

This file contains some sample input to be scanned. It does not exercise all of the lexical
specification, but it is nevertheless an interesting test. It is not a good test to start with, nor does it
provide adequate testing of your scanner. Part of your assignment is to come up with a good testing
inputs and testing strategy. You should modify this file with tests that you think adequately exercise
your scanner.

• README

This file contains detailed instructions for the assignment as well as a number of useful tips.

Although these files are incomplete as given, the lexer does compile and run. To build the lexer, you
must type make lexer both in C++ and Java.

CS 4300 Compiler Theory

4. Scanner Results

In this assignment, you are expected to write Flex rules that match on the appropriate regular
expressions defining valid tokens in Cool as described in Section 10 and Figure 1 of the Cool manual and
perform the appropriate actions, such as returning a token of the correct type, recording the value of a
lexeme where appropriate, or reporting an error when an error is encountered. Before you start on this
assignment, make sure to read Section 10 and Figure 1 of the Cool manual; then study the different
tokens defined in cool-parse.h. Your implementation needs to define Flex/Jlex rules that match the
regular expressions defining each token defined in cool-parse.h and perform the appropriate action for
each matched token. For example, if you match on a token BOOL_CONST, your lexer has to record
whether its value is true or false; similarly if you match on a TYPEID token, you need to record the name
of the type. Note that not every token requires storing additional information; for example, only
returning the token type is sufficient for some tokens like keywords.

Your scanner should be robust—it should work for any conceivable input. For example, you must handle
errors such as an EOF occurring in the middle of a string or comment, as well as string constants that are
too long. These are just some of the errors that can occur; see the manual for the rest.

You must make some provision for graceful termination if a fatal error occurs. Core dumps or uncaught
exceptions are unacceptable.

4.1. Error Handling

All errors should be passed along to the parser. You lexer should not print anything. Errors are
communicated to the parser by returning a special error token called ERROR. (Note, you should ignore
the token called error [in lowercase] for this assignment; it is used by the parser in PA3.) There are
several requirements for reporting and recovering from lexical errors:

• When an invalid character (one that can’t begin any token) is encountered, a string containing just
that character should be returned as the error string. Resume lexing at the following character.

• If a string contains an unescaped newline, report that error as ‘‘Unterminated string constant’’ and
resume lexing at the beginning of the next line—we assume the programmer simply forgot the
close-quote.

• When a string is too long, report the error as ‘‘String constant too long’’ in the error string in the
ERROR token. If the string contains invalid characters (i.e., the null character), report this as ‘‘String
contains null character’’. In either case, lexing should resume after the end of the string. The end of
the string is defined as either

1. the beginning of the next line if an unescaped newline occurs after these errors are encountered;
or

2. after the closing ” otherwise.

• If a comment remains open when EOF is encountered, report this error with the message ‘‘EOF in
comment’’. Do not tokenize the comment’s contents simply because the terminator is missing.
Similarly for strings, if an EOF is encountered before the close-quote, report this error as ‘‘EOF in
string constant’’.

• If you see “*)” outside a comment, report this error as ‘‘Unmatched *)’’, rather than tokenzing it as
* and).

CS 4300 Compiler Theory

• Recall from lecture that this phase of the compiler only catches a very limited class of errors. Do not
check for errors that are not lexing errors in this assignment. For example, you should not check if
variables are declared before use. Be sure you understand fully what errors the lexing phase of a
compiler does and does not check for before you start.

4.2 String Table

Programs tend to have many occurrences of the same lexeme. For example, an identifier is generally
referred to more than once in a program (or else it isn’t very useful!). To save space and time, a
common compiler practice is to store lexemes in a string table. We provide a string table
implementation for both C++ and Java. See the following sections for the details.

There is an issue in deciding how to handle the special identifiers for the basic classes (Object, Int, Bool,
String), SELF TYPE, and self. However, this issue doesn’t actually come up until later phases of the
compiler—the scanner should treat the special identifiers exactly like any other identifier.

Do not test whether integer literals fit within the representation specified in the Cool manual—simply
create a Symbol with the entire literal’s text as its contents, regardless of its length.

4.3 Strings

Your scanner should convert escape characters in string constants to their correct values. For example, if
the programmer types these eight characters:

your scanner would return the token STR_CONST whose semantic value is these 5 characters:

where represents the literal ASCII character for newline.

Following specification on page 15 of the Cool manual, you must return an error for a string containing
the literal null character. However, the sequence of two characters

is allowed but should be converted to the one character

4.4 Other Notes

Your scanner should maintain the variable curr_lineno that indicates which line in the source text is
currently being scanned. This feature will aid the parser in printing useful error messages.

You should ignore the token LET_STMT. It is used only by the parser (PA3). Finally, note that if the lexical
specification is incomplete (some input has no regular expression that matches), then the scanners
generated by both flex and jlex do undesirable things. Make sure your specification is complete.

c a " b \ " d n

c a b \n d

\n

\ 0

0

CS 4300 Compiler Theory

5. Notes for the C++ Version of the Assignment

If you are working on the Java version, skip to the following section.

• Each call on the scanner returns the next token and lexeme from the input. The value returned by
the function cool_yylex is an integer code representing the syntactic category (e.g., integer literal,
semicolon, if keyword, etc.). The codes for all tokens are defined in the file cool-parse.h. The second
component, the semantic value or lexeme, is placed in the global union cool_yylval, which is of type
YYSTYPE. The type YYSTYPE is also defined in cool-parse.h. The tokens for single character symbols
(e.g., “;” and “,”) are represented just by the integer (ASCII) value of the character itself. All of the
single character tokens are listed in the grammar for Cool in the Cool manual.

• For class identifiers, object identifiers, integers, and strings, the semantic value should be a Symbol
stored in the field cool_yylval.symbol. For boolean constants, the semantic value is stored in the
field cool_yylval.boolean. Except for errors (see below), the lexemes for the other tokens do not
carry any interesting information.

• We provide you with a string table implementation, which is discussed in detail in A Tour of the Cool
Support Code and in documentation in the code. For the moment, you only need to know that the
type of string table entries is Symbol.

• When a lexical error is encountered, the routine cool_yylex should return the token ERROR. The
semantic value is the string representing the error message, which is stored in the field
cool_yylval.error_msg (note that this field is an ordinary string, not a symbol). See the previous
section for information on what to put in error messages.

6 Notes for the Java Version of the Assignment

If you are working on the C++ version, skip this section.

• Each call on the scanner returns the next token and lexeme from the input. The value returned by
the method CoolLexer.next_token is an object of class java_cup.runtime.Symbol. This object has a
field representing the syntactic category of a token (e.g., integer literal, semicolon, the if keyword,
etc.). The syntactic codes for all tokens are defined in the file TokenConstants.java. The component,
the semantic value or lexeme (if any), is also placed in a java_cup.runtime.Symbol object. The
documentation for the class java_cup.runtime.Symbol as well as other supporting code is available
on the course webpage.

• For class identifiers, object identifiers, integers, and strings, the semantic value should be of type
AbstractSymbol. For boolean constants, the semantic value is of type java.lang.Boolean. Except for
errors (see below), the lexemes for the other tokens do not carry any interesting information. Since
the value field of class java_cup.runtime.Symbol has generic type java.lang.Object, you will need to
cast it to a proper type before calling any methods on it.

• We provide you with a string table implementation, which is defined in AbstractTable.java. For the
moment, you only need to know that the type of string table entries is AbstractSymbol.

• When a lexical error is encountered, the routine CoolLexer.next_token should return a
java_cup.runtime.Symbol object whose syntactic category is TokenConstants.ERROR and whose
semantic value is the error message string. See Section 4 for information on how to construct error
messages.

CS 4300 Compiler Theory

7. Testing the Scanner

You can build your lexer by typing make lexer. Your lexer will be generated if there is no syntax error in
cool.flex (or cool.lex for Java) file. There are at least two ways that you can test your lexer. The first way
is to generate sample inputs and run them using lexer, which prints out the line number and the lexeme
of every token recognized by your scanner. The other way, when you think your scanner is working, is to
try running mycoolc to invoke your lexer together with all other compiler phases (which we provide).
This will be a complete Cool compiler that you can try on any test programs.

Example commands for the testing are shown as below:

$ make lexer
$./lexer test.cl > test.output (or $ make test.output)
$./mycoolc io.cl
$./spim io.s

8. What to Turn In

When you are ready to turn in the assignment, type make submit in the directory where you have
prepared your assignment, for example, PA2. This action will copy three files of the assignment (cool.flex,
README, test.cl) and test.output (the output of running your program on test.cl) to the instructor's
directory. The last submission you do will be the one graded. Each submission overwrites the previous
one.

Your writeup should explain design decisions and testing results, why your code is correct, and why your
test cases are adequate. It is part of the assignment to clearly and concisely explain things in text as well
as to comment your code. You should convince us that you understand the material. Writeups should be
typed either in README file or in a word-processing file, handwritten writeup will not be accepted.

Please review the late submission policy. An assignment is late if any of the electronically submitted files
are late, or the paper writeup is late. You should take reasonable precautions to prevent the theft of
your code. (i.e. don't leave printouts in public recycle bins, don't allow group or world access to your
files, don't give your password to a classmate etc.)

