CS 4300: Compiler Theory

Chapter 6
 Intermediate-Code Generation

Xuejun Liang
2019 Fall

Introduction

Logical structure of a compiler front end

A sequence of intermediate representations
$\underset{\text { Program }}{\text { Source }} \rightarrow \underset{\text { Intermediate }}{\text { High Level }} \rightarrow \cdots \rightarrow \underset{\text { Representation }}{\text { Intermediate }} \rightarrow \underset{\text { Representation }}{\text { Int }} \rightarrow \underset{\text { Code }}{\text { Iarget }}$

Syntax trees are high level
Three-address code can range from high-level to low-level, depending on the choice of operators

Static versus Dynamic Checking

- Static checking: checked at compile time
- Compiler enforces programming language's static semantics
- Typical examples of static checking:
- Type checks
- Flow-of-control checks
- Uniqueness checks
- Name-related checks
- Dynamic semantics: checked at run time
- Compiler generates verification code to enforce programming language's dynamic semantics

Type Checking, Overloading, Coercion, Polymorphism

```
class X { virtual int m(); } *x;
class Y: public X { virtual int m(); } *y;
int op(int), op(float);
int f(float);
int a, c[10], d;
d = c + d; // FAIL
*d = a; // FAIL
a = op(d); // OK: static overloading (C++)
a = f(d); // OK: coersion of d to float
a = x->m(); // OK: dynamic binding (C++)
vector<int> v; // OK: template instantiation
```


Flow-of-Control Checks

```
myfunc()
{ ..
    break; // ERROR
}
```

```
myfunc()
```

myfunc()
{ ...
{ ...
while (n)
while (n)
{ ...
{ ...
if (i>10)
if (i>10)
break; // OK
break; // OK
}
}
}

```
}
```

```
myfunc()
{ ...
    switch (a)
    { case 0:
        break; // OK
        case 1:
    }
}
```


Uniqueness Checks

```
myfunc()
{ int i, j, i; // ERROR
}
```

cnufym(int a, int a) // ERROR
\{
\}

```
struct myrec
{ int name;
} ;
struct myrec // ERROR
{ int id;
};
```


Outlines (Sections)

1. Variants of Syntax Trees
2. Three-Address Code
3. Types and Declarations
4. Translation of Expressions
5. Type Checking
6. Control Flow
7. Backpatching
8. Switch-Statements
9. Intermediate Code for Procedures

1. Variants of Syntax Trees

A directed acyclic graph (called a DAG) for an expression identifies the common subexpressions of the expression

Value number

2. Three-Address Code

In three-address code, there is at most one operator on the right side of an instruction. An address can be: name, constant, compiler-generated temporary.

DAG

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{b}-\mathrm{c} \\
& \mathrm{t}_{2}=\mathrm{a} * \mathrm{t}_{1} \\
& \mathrm{t}_{3}=\mathrm{a}+\mathrm{t}_{2} \\
& \mathrm{t}_{4}=\mathrm{t}_{1} * \mathrm{~d} \\
& \mathrm{t}_{5}=\mathrm{t}_{3}+\mathrm{t}_{4}
\end{aligned}
$$

Three-address code

Common Three-Address Instructions

1. Assignment instruction

$$
x=y \text { op } z
$$

2. Assignment
3. Copy instruction
4. Indexed copy instruction
5. Address and pointer assignment:
6. Unconditional jump
7. Conditional jump
8. Conditional jump
if x goto L and ifFalse x goto L
9. Procedure call $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$: param x_{l}

$$
\text { param } x_{2}
$$

$$
\begin{aligned}
& \text { param } x_{n} \\
& \text { call } p, n
\end{aligned}
$$

Two Ways of Assigning Labels to Three-Address Statements

$$
\begin{aligned}
& \text { do } \mathrm{i}=\mathrm{i}+\mathrm{I} \text {; while }(\mathrm{a}[\mathrm{i}]<\mathrm{v}) \text {; } \\
& \text { L: } \quad \mathrm{t}_{1}=\mathrm{i}+1 \\
& \mathrm{i}=\mathrm{t}_{1} \\
& \mathrm{t}_{2}=\mathrm{i} * 8 \\
& \mathrm{t}_{3}=\mathrm{a}\left[\mathrm{t}_{2}\right] \\
& \text { if } \mathrm{t}_{3}<\mathrm{v} \text { goto } \mathrm{L} \\
& \text { (a) Symbolic labels. } \\
& \text { 100: } \quad \mathrm{t}_{1}=\mathrm{i}+1 \\
& \text { 101: } \quad i=t_{1} \\
& \text { 102: } \mathrm{t}_{2}=\mathrm{i} * 8 \\
& \text { 103: } \mathrm{t}_{3}=\mathrm{a}\left[\mathrm{t}_{2}\right] \\
& \text { 104: if } \mathrm{t}_{3}<\mathrm{v} \text { goto } 100 \\
& \text { (b) Position numbers. }
\end{aligned}
$$

Quadruples, Triples, and Indirect Triples

$$
\begin{aligned}
\mathrm{t}_{1} & =\text { minus } \mathrm{c} \\
\mathrm{t}_{2} & =\mathrm{b} * \mathrm{t}_{1} \\
\mathrm{t}_{3} & =\text { minus } \mathrm{c} \\
\mathrm{t}_{4} & =\mathrm{b} * \mathrm{t}_{3} \\
\mathrm{t}_{5} & =\mathrm{t}_{2}+\mathrm{t}_{4} \\
\mathrm{a} & =\mathrm{t}_{5}
\end{aligned}
$$

Three-address code

3. Type Expressions

- A type expression is either a basic type or is formed by applying a type constructor to type expressions
- Basic types: boolean, char, integer, float, etc.
- Type constructors: pointer-to, array-of, records and classes, list-of, templates, and functions ($\mathrm{s} \rightarrow \mathrm{t}$).
- Type names: typedefs in C and named types in Pascal
- Type expressions may contain variables whose values are type expressions

Graph Representations for Type Expressions

```
int *fun(char*,char*)
```

int [2][3]

Tree

Cyclic Graph Representations

Source	
program	struct Node f int val; struct Node *next; $\} ;$

Internal compiler representation of the Node type:
cyclic graph

Type Equivalence

- When type expressions are represented by graphs, two types are structurally equivalent if and only if one of the following conditions is true:
- They are the same basic type.
- They are formed by applying the same constructor to structurally equivalent types .
- One is a type name that denotes the other .
- If type names are treated as standing for themselves, then the first two conditions in the above definition lead to name equivalence of type expressions

Structural Equivalence Example

- Two types are the same if they are structurally identical
- Used in C/C++, Java, C\#

Type Equivalence Examples

```
struct Node
{ int val;
    struct Node *next;
};
struct Node s, *p;
p = &s; // OK
*p = s; // OK
p = s; // ERROR
```


Storage Layout for Local Names

record \{ int tag; float x ; float y ; \} q;
int [5] a;

Computing Types and Their Widths

$$
\begin{array}{ll}
T \rightarrow B & \{t=\text { B.type } ; \text { w }=\text { B. width } ;\} \\
B \rightarrow \text { int } & \{\text { B.type }=\text { integer } ; \text { B. width }=4 ;\} \\
B \rightarrow \text { float } & \{\text { B.type }=\text { float } ; \text { B. width }=8 ;\} \\
C \rightarrow \epsilon & \{\text { C.type }=\text { t; C.width }=w ;\} \\
C \rightarrow[\text { num }] C_{1} & \begin{array}{ll}
\left\{\text { array } \left(\text { num } . \text { value }, C_{1} . t y p e ~\right.\right.
\end{array} ; \\
\text { C.width } \left.=\text { num. value } \times C_{1} . \text { width } ;\right\}
\end{array}
$$

Sequences of Declarations

Computing the relative addresses of declared names

$$
\begin{array}{rlrl}
P & \rightarrow D & & \{\text { offset }=0 ;\} \\
D & \rightarrow T \text { id } ; & & \{\text { top.put }(\mathbf{i d} . \text { lexeme, T.type, offset }) ; \\
& & D_{1} & \\
& \text { offset }=\text { offset }+T . \text { width } ;\}
\end{array}
$$

Handling of field names in records
$T \rightarrow$ record $^{\prime}\{$ ' \quad Env.push $($ top $) ;$ top $=$ new $\operatorname{Env}()$; Stack.push $($ offset $)$; offset $=0 ;\}$
$\left.D^{\prime}\right\}^{\prime} \quad\{$ T.type $=\operatorname{record}($ top $) ;$ T.width $=$ offset; top $=$ Env.pop ()$;$ offset $=$ Stack.pop ()$;\}$

Examples:

Determine types and relative addresses
float x ;
record \{ float x ; float y ; \} p;
record \{ int tag; float x ; float y ; \} q ;

Translation of Expressions (cont.)

S	$\rightarrow \mathrm{id}=\mathrm{E} ;$
E	$\rightarrow \mathrm{E}_{1}+\mathrm{E}_{2}$
\mid	$-\mathrm{E}_{1}$
	$\left(\mathrm{E}_{1}\right)$
\mid	id

$\{$ gen(top.get(id.lexeme) '=' E.addr) ; \}
```{ E.addr = new Temp(); gen(E.addr '=' E E .addr '+' E2.addr) ; }```
```{ E.addr = new Temp(); gen(E.addr '=' 'minus' E El.addr); }```
\{ E.addr $=\mathrm{E}_{1} \cdot \mathrm{addr} ;$ \}
\{ E.addr $=$ top.get(id.lexeme) ; \}

Figure 6.20: Generating three-address code for expressions incrementally
In the incremental approach, gen not only constructs a three-address instruction, it appends the instruction to the sequence of instructions generated so far.

Addressing Array Elements

$$
a[i] \cdot a d d r=\text { base }+i \times w \quad A\left[i_{1}\right]\left[i_{2}\right] \cdot a d d r=\text { base }+i_{1} \times w_{1}+i_{2} \times w_{2}
$$

$$
\begin{equation*}
A\left[i_{1}\right]\left[i_{2}\right] \ldots\left[i_{k}\right] \cdot \operatorname{addr}=\text { base }+i_{1} \times w_{1}+i_{2} \times w_{2 .} \ldots+i_{k} \times w_{k} \tag{6.4}
\end{equation*}
$$

Layouts for a two-dimensional array

Translation of Array References

$\mathrm{S} \rightarrow \mathrm{L}=\mathrm{E}$	\{ gen(L.addr.base '[' L.addr ']' '=' E.addr); \}
$\mathrm{E} \rightarrow \mathrm{L}$	```{ E.addr = new Temp(); gen(E.addr '=' L.array.base '[' L.addr '] '); }```
$\mathrm{L} \rightarrow \mathbf{i d}$ [E]	```{ L.array = top.get(id.lexeme); L.type = L.array.type.elem; L.addr = new Temp(); gen(L.addr '=' E.addr '*' L.type.width); }```
\| L_{1} [E]	```\(\left\{\right.\) L. array \(=L_{1}\).array; L.type \(=\mathrm{L}_{1}\).type.elem; t = new Temp(); L.addr = new Temp(); gen(t ' \(=\) ' E.addr ' \({ }^{\prime \prime}\) L.type.width); gen(L.addr \({ }^{\prime}={ }^{\prime} L_{1}\).addr ' + ' t ; ;```

Figure 6.22: Semantic actions for array references

Translation of Array References (Cont.)

- Nonterminal L has three synthesized attributes:

1. L.addr denotes a temporary that is used while computing the offset for the array reference by summing the $\mathbf{i}_{\mathbf{j}} \times \mathbf{w}_{\mathbf{j}}$ in (6.4)
2. L.array is a pointer to the symbol-table entry for the array name.

- L.array.base is the base address of the array.
- L.array.type is the type of the array.

3. L.type is the type of the subarray generated by L.

- Assume t is a type, then
- t.width represents the width.
- t.elem gives the element type.

Example 6.12

a is a 2×3 array of integers
\mathbf{i}, \mathbf{j}, and \mathbf{c} are integers

5. Type Checking

- To do type checking a compiler needs to assign a type expression to each component of the source program.
- The compiler must then determine that these type expressions conform to a collection of logical rules that is called the type system for the source language
- Type checking can take on two forms:
- Synthesis
- Inference

Rules for Type Checking

- Type synthesis builds up the type of an expression from the types of its subexpressions.
- It requires names to be declared before they are used.

$$
\begin{aligned}
& \text { if } \mathrm{f} \text { has type } \mathrm{s} \rightarrow \mathrm{t} \text { and } \mathrm{x} \text { has type } \mathrm{s}, \\
& \text { then expression } \mathrm{f}(\mathrm{x}) \text { has type } \mathrm{t}
\end{aligned}
$$

- Type inference determines the type of a language construct from the way it is used.
- It does not require names to be declared
if $f(x)$ is an expression, then for some α and β, f has type $\alpha \rightarrow \beta$ and x has type α

Type Conversions

- Widening conversions
- preserve information
- Narrowing conversions
- lose information
- Coercions (implicit conversions)

- are done automatically by the compiler.
- Casts (explicit conversions)
- are done by programmer to write something to cause the conversion.

Introducing Type Conversions into Expression Evaluation

$$
\begin{aligned}
& E \rightarrow E_{1}+E_{2} \quad\left\{\text { E.type }=\max \left(E_{1} \text {.type, } E_{2} . \text { type }\right) ;\right. \\
& a_{1}=\text { widen }\left(E_{1} \cdot \text { add } r, E_{1} \cdot \text { type, E.type }\right) ; \\
& a_{2}=\operatorname{widen}\left(E_{2} . a d d r, E_{2} . \text { type, E.type }\right) ; \\
& E . a d d r=\text { new } \operatorname{Temp}() \text {; } \\
& \left.\operatorname{gen}\left(E . a d d r^{\prime}={ }^{\prime} a_{1}^{\prime}+^{\prime} a_{2}\right) ;\right\}
\end{aligned}
$$

$\max \left(t_{1}, t_{2}\right)$ returns the maximum (or least upper bound) of the two types t_{1} and t_{2} in the widening hierarchy.
widen (a, t, w) generates type conversions if needed to widen an address a of type t into a value of type w.

$$
\begin{aligned}
& \mathrm{x}=2+3.14 \\
& \downarrow \\
& \hline \mathrm{t}_{1}=(\text { float }) 2 \\
& \mathrm{t}_{2}=\mathrm{t}_{1}+3.14 \\
& \mathrm{x}=\mathrm{t}_{2} \\
& \hline
\end{aligned}
$$

Overloading of Functions and Operators

Overloaded function examples

$$
\begin{array}{|l|}
\hline \text { void } \operatorname{err}()\{\ldots\} \\
\text { void } \operatorname{err}(\text { String s) }\{\ldots\} \\
\hline
\end{array}
$$

A type-synthesis rule for overloaded functions

> | if f can have type $s_{i} \rightarrow t_{i}$, for $1 \leq i \leq n$, where $s_{i} \neq s_{j}$ for $i \neq j$ |
| :--- |
| and x has type s_{k}, for some $1 \leq k \leq n$ |
| then expression $f(x)$ has type t_{k} |

Type Inference and Polymorphic Functions

The term "polymorphic" refers to any code fragment that can be executed with arguments of different types

ML program for the length of a list
fun length $(x)=$
if $\operatorname{null}(x)$ then 0 else length $(t l(x))+1 ;$

Example of use of length
length(["sun", "mon", "tue"]) + length([10, 9, 8, 7]) returns 7

The type of length
$\forall \alpha$ list $(\alpha) \rightarrow$ integer

Abstract syntax tree

Substitutions, Instances, and Unification

- A substitution S is a mapping from type variables to type expressions.
- $S(t)=$ the result of applying the substitution S to the variables in type expression t.
- $S(\alpha)=$ integer
- $t=$ list (α), then $S(t)=$ list(integer $)$
- $t=\alpha \rightarrow \alpha$, then $S(t)=$ integer \rightarrow integer
- $S(t)$ is called an instance of t.
- A substitution S is a unifier of two types t_{1} and $t_{2}\left(\mathrm{t}_{1}\right.$ and t_{2} unify), if $S\left(t_{1}\right)=S\left(t_{2}\right)$.
- In the type inference algorithm, we substitute type variables by types to create type instances

Inferring a type for the function length

fun length $(x)=$ if $\operatorname{null}(x)$ then 0 else length $(t l(x))+1$;

LINE	EXPRESSION : TYPE	UNIFY
1)	length : $\beta \rightarrow \gamma$	
2)	$x: \beta$	
3)	if : boolean $\times \alpha_{i} \times \alpha_{i} \rightarrow \alpha_{i}$	
4)	null : list $\left(\alpha_{n}\right) \rightarrow$ boolean	
5)	$n u l l(x)$: boolean	$\operatorname{list}\left(\alpha_{n}\right)=\beta$
6)	0 : integer	$\alpha_{i}=$ integer
7)	+ : integer \times integer \rightarrow integer	
8)	$t l: \operatorname{list}\left(\alpha_{t}\right) \rightarrow \operatorname{list}\left(\alpha_{t}\right)$	
9)	$t l(x): \operatorname{list}\left(\alpha_{t}\right)$	$\operatorname{list}\left(\alpha_{t}\right)=\operatorname{list}\left(\alpha_{n}\right)$
10)	length $(t l(x)): \gamma$	$\gamma=$ integer
11)	1 : integer	
12)	length $(t l(x))+1:$ integer	
13)	if(\cdots) : integer	
	$\square \quad \forall \alpha_{\mathrm{n}} \cdot \operatorname{list}\left(\alpha_{\mathrm{n}}\right) \rightarrow$ integer	

An Algorithm for Unification

Examples 6.18: Consider the two type Expressions $\mathrm{t}_{1}, \mathrm{t}_{2}$, and the substitution S
$\mathrm{t}_{1}=\left(\left(\alpha_{1} \rightarrow \alpha_{2}\right) \times \operatorname{list}\left(\alpha_{3}\right)\right) \rightarrow \operatorname{list}\left(\alpha_{2}\right)$ $\mathrm{t}_{2}=\left(\left(\alpha_{3} \rightarrow \alpha_{4}\right) \times \operatorname{list}\left(\alpha_{3}\right)\right) \rightarrow \alpha_{5}$

x	$S(x)$
α_{1}	α_{1}
α_{2}	α_{2}
α_{3}	α_{1}
α_{4}	α_{2}
α_{5}	$\operatorname{list}\left(\alpha_{2}\right)$

$S\left(t_{1}\right)=S\left(t_{2}\right)=\left(\left(\alpha_{1} \rightarrow \alpha_{2}\right) \times \operatorname{list}\left(\alpha_{1}\right)\right) \rightarrow \operatorname{list}\left(\alpha_{2}\right)$

An Algorithm for Unification(Cont.)

```
boolean unify(Node m,Node n) {
    s=find(m); t= find(n);
    if (s=t) return true;
    else if (nodes s and t represent the same basic type ) return true;
    else if (s is an op-node with children s}\mp@subsup{s}{1}{}\mathrm{ and s2 and
            t is an op-node with children tr and t t2) {
    union(s,t);
    return unify( }\mp@subsup{s}{1}{},\mp@subsup{t}{1}{})\mathrm{ and unify (s2, t2);
    }
    else if s or t represents a variable {
        union(s,t);
        return true;
    }
    else return false;
}
```

