
4. Syntax-Directed Translation Schemes

• Any SDT can be implemented by first building a

parse tree and then performing the actions in a

left-to-right depth-first order.

• Some SDT's can be implemented during parsing,

1

• Some SDT's can be implemented during parsing,

without building a parse tree.

– But, not all SDT's can be implemented during parsing.

• Two important classes of SDD's will be

considered:

– LR-grammar and S-attributed SDD

– LL-grammar and L-attributed SDD

Postfix Translation Schemes

2

SDT's with all actions at the right ends of the

production bodies are called postfix SDT's

Example: Postfix SDT implementing the desk calculator

Since the underlying grammar is LR, and the SDD is

S-attributed, these actions can be correctly performed

along with the reduction steps of the parser

Parser-Stack Implementation of Postfix SDT's

3

Parser stack

Implementing the desk calculator

on a bottom-up parsing stack

SDT's With Actions Inside Productions

• Consider a production: B → X {a} Y

– The action a is done after we have recognized X (if X is

a terminal) or all the terminals derived from X (if X is a

nonterminal)

• Insert marker nonterminals to remove the embedded

4

• Insert marker nonterminals to remove the embedded

action and to change the SDT to a postfix SDT

– Rewrite the product with marker nonterminal M into

B → X M Y

M → ε {a}

• Problems with inserting marker nonterminals

– May introduce conflicts in the parse table

– How to propagate inherited attributes?

Any SDT Can Be Implemented

1. Ignoring the actions, parse the input and produce

a parse tree as a result.

2. Then, examine each interior node N, say one for

production A → α. Add additional children to N

5

production A → α. Add additional children to N

for the actions in α, so the children of N from left

to right have exactly the symbols and actions of

α.

3. Perform a preorder traversal of the tree, and as

soon as a node labeled by an action is visited,

perform that action.

Parse Tree With Actions Embedded

6

3 * 5 + 4

+ * 3 5 4+ * 3 5 4

7

Eliminating Left Recursion From SDT’s

When the order in which the actions in an SDT is

needed to consider only, the actions are treated as

if they were terminal symbols during transforming

the grammar,

E → E + T {print(‘+’);}

E → T

A → β R

R → α R

R → ε

A → A α

A → β

E → T R

R → + T {print(‘+’);} R

R → ε

8

Eliminating Left Recursion From SDT’s

→ { .a = (.a, .y) }

A.a = g(g(f(X.x), Y1.y), Y2.y)

Y2A.a = g(f(X.x), Y1.y)

A ⇒ A Y2

⇒ A Y1 Y2

⇒ X Y1 Y2

A → A Y

A → X

A → A1 Y { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }

A → X { R.i = f(X.x) } R { A.a = R.s }

R → Y { R1.i = g(R.i, Y.y) } R1 { R.s = R1.s }

R → ε { R.s = R.i }

Y1

X

A.a = f(X.x)

9

Eliminating Left Recursion (Cont.)

X R1.i = f(X.x)

A A → X R

R → Y R

R → ε

A ⇒ X R

⇒ X Y1 R

⇒ X Y1 Y2 R

⇒ X Y1 Y2

R3.i = g(g(f(X.x), Y1.y), Y2.y)Y2

Y1 R2.i = g(f(X.x), Y1.y)

ε1. Flow of inherited

attribute values

10

Eliminating Left Recursion (Cont.)

X R1.s = R2.s = g(g(f(X.x), Y1.y), Y2.y)

A.s = R1.s = g(g(f(X.x), Y1.y), Y2.y)
A ⇒ X R

⇒ X Y1 R

⇒ X Y1 Y2 R

⇒ X Y1 Y2

R3.s = R3.i = g(g(f(X.x), Y1.y), Y2.y)Y2

Y1 R2.s = R3.s = g(g(f(X.x), Y1.y), Y2.y)

ε2. Flow of synthesized

attribute values

SDT's for L-Attributed Definitions

• Assume that the underlying grammar can be parsed

top-down

• The rules for turning an L-attributed SDD into an SDT

are as follows

1. Embed the action that computes the inherited attributes for

11

1. Embed the action that computes the inherited attributes for

a nonterminal A immediately before that occurrence of A

in the body of the production. If several inherited attributes

for A depend on one another in an acyclic fashion, order

the evaluation of attributes so that those needed first are

computed first.

2. Place the actions that compute a synthesized attribute for

the head of a production at the end of the body of that

production.

Example: Typesetting

12

This grammar is ambiguous, but we can still use it to parse

B → B1 B2 | B1 sub B2 | (B1) | text

The input string a sub i sub j b sub k will produce
ki ba

j

Consider the following grammar

This grammar is ambiguous, but we can still use it to parse

bottom-up if we make subscripting and juxtaposition right

associative, with sub taking precedence over juxtaposition.

Constructing larger boxes from smaller ones

SDD for typesetting boxes

13

SDT for typesetting boxes
14

Example: Intermediate Code Generation

15

Consider the following grammar

S → while (C) S1

Inherited attributes

S.code

……

……

S1.next C.code
Inherited attributes

S.next

C.true

C.false

synthesized attributes

S.code

C.code

……

if true goto C.true

if false goto C.false

……

……

goto S1.next

C.false

C.true S1.code

Intermediate Code Generation (Cont.)

16

SDD for while-statements

SDT for while-statements

5. Implementing L-Attributed SDD's

Four methods for translation during parsing:

A. Use a recursive-descent parser with one function for each

nonterminal.

– The function for nonterminal A receives the inherited attributes of

A as arguments and returns the synthesized attributes of A.

17

A as arguments and returns the synthesized attributes of A.

B. Generate code on the fly, using a recursive-descent parser.

C. Implement an SDT in conjunction with an LL-parser.

– The attributes are kept on the parsing stack, and the rules fetch the

needed attributes from known locations on the stack.

D. Implement an SDT in conjunction with an LR-parser.

– If the underlying grammar is LL, we can always handle both the

parsing and translation bottom-up.

A. Translation During Recursive-Descent Parsing

18

Example: Implementing while-statement

B. On-The-Fly Intermediate Code Generation

19

Recursive-descent code generation for while-statement

On-The-Fly Code Generation (cont.)

20

SDT for on-the-fly code generation for while statements

Incidentally, we can make the same change to the underlying

SDT: turn the construction of a main attribute into actions SDT: turn the construction of a main attribute into actions

that emit the elements of that attribute

Figure 5.32: SDT for on-the-fly code generation

for while statements

C. L-Attributed SDD's and LL Parsing

• For an SDT with embedded actions converted from an L-

attributed SDD with an LL-grammar, then the translation

can be performed during LL parsing by extending the

parser stack to hold actions and certain data items needed

for attribute evaluation.

21

for attribute evaluation.

• In addition to records representing terminals and

nonterminals, the parser stack will hold

– Inherited attributes for a nonterminal A are placed inside A

– Action-records to represent actions to be executed are placed

above A

– Synthesize-records to hold the synthesized attributes for a

nonterminals A are placed below A

Example: Implement the SDT of Fig.5.32

22

Just before expanding S

On-the-fly generation

Immediately after expanding S

Example: Implement the SDT of Fig.5.32

(Cont.)

23

After the action above C is performed

On-the-fly generation

Note: L1 = y, L2 = z

D. Bottom-Up Parsing of L-Attributed SDD's

L-attributed SDD on LL grammar can be adapted to compute

the same SDD on the new grammar during an LR parse

1. Start with the SDTwith embedded actions before each

nonterminal to compute its inherited attributes and an action at

the end of the production to compute synthesized attributes.

24

2. Introduce into a distinct marker nonterminal M in place of each

embedded action, and add one production M → ε .

3. Modify the action a if M replaces it in some production

A →α{a}β, and associate with M → ε an action a' that

a) Copies, as inherited attributes of M, any attributes of A or

symbols of α that action a needs.

b) Computes attributes in the same way as a, but makes those

attributes be synthesized attributes of M.

Turn SDT to Operate with LR Parse

25

A → {B.i = f(A.i); } B C
A → M B C

M → ε {M.i = A.i; M.s = f(M.i); }

Example 5.25:

Example 5.26:

S → while (M C) N S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

M → ε { L1 = new(); L2 = new(); C.false = S.next; C.true = L2;}

N → ε { S1.next = L1; }

S → while ({ L1 = new(); L2 = new(); C.false = S.next; C.true = L2; }

C) { S1.next = L1 ; }

S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

Example 5.26 (Cont.)

26

LR parsing stack after

reduction of ε to M

L1 = new();

L2 = new();

C.true = L2;

C.false = stack[top-3].next;

Code with M→ε

Code with N→ε

S .next = stack[top-3].L1;
reduction of ε to M

Stack just before reduction of the while-production body to S

S1.next = stack[top-3].L1;

Code with reducing

the while body to S.

tempCode = label ||stack[top-4].L1||

stack[top-3].code || label ||

stack[top-4].L2 || stack[top].code;

top = top-6; stack[top].code = tempCode;

