
CS 4300: Compiler Theory

Chapter 5
Syntax-Directed Translation

Xuejun Liang

2019 Fall

Outlines (Sections)

1. Syntax-Directed Definitions

2. Evaluation Orders for SDD's

3. Applications of Syntax-Directed Definition

4. Syntax-Directed Translation Schemes

5. Implementing L-Attributed SDD's

2

1. Syntax-directed Definition

• A syntax-directed definition (SSD) specifies the values of
attributes by associating semantic rules with the grammar
productions

• A syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies

• Between the two notations
– syntax-directed definitions can be more readable, and hence

more useful for specifications.

– However, translation schemes can be more efficient, and
hence more useful for implementations

3

4

Attributes
• A synthesized attribute at node N is defined only in terms

of attribute values at the children of N and at N itself.

• An inherited attribute at node N is defined only in terms of
attribute values at N's parent , N itself, and N's siblings

• Attribute values typically represent
– Numbers (literal constants)

– Strings (literal constants)

– Memory locations, such as a frame index of a local variable
or function argument

– A data type for type checking of expressions

– Scoping information for local declarations

– Intermediate program representations

5

Example Syntax-directed Definition

L E n
E  E1 + T
E  T
T  T1 * F
T  F
F  (E)
F  digit

L.val = E.val
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val * F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

Production Semantic Rule

Note: all attributes in this example
are of the synthesized type

A simple desk calculator

An SDD with
only synthesized
attributes is called
S-attributed.

An SDD without
side effects is
called an
attribute grammar

6

Annotated Parse Tree for 3 * 5 + 4 n

A parse tree, showing
the value(s) of its
attribute(s) is called an
annotated parse tree.

7

Annotating a Parse Tree With
Depth-First Traversals

procedure visit(n : node);
begin

for each child m of n, from left to right do
visit(m);

evaluate semantic rules at node n
end

With synthesized attributes, we can evaluate
attributes in any bottom-up order, such as that
of a postorder traversal of the parse tree.

An SDD Based on a Grammar
Suitable for Top-down Parsing

8

An inherited attribute for nonterminal T’
is used to pass the operand to the operator

T  T * F
T  F
F  digit

Annotated Parse Tree for 3 * 5

9

An inherited attribute for nonterminal T’
is used to pass the operand to the operator

10

Example Attribute Grammar with
Synthesized & Inherited Attributes

D T L
T  int
T  float
L  L1 , id

L  id

L.inh = T.type
T.type = ‘integer’
T.type = ‘float’
L1.inh = L.inh;
addtype(id.entry, L.inh)
addtype(id.entry, L.inh)

Production Semantic Rule

Synthesized: T.type, id.entry
Inherited: L.inh

Simple Type Declaration

treated as
dummy
synthesized
attribute

11

2. Evaluation Orders for SDD 's

A X Y A.a = f(X.x, Y.y)

X.x = f(A.a, Y.y)

Y.y = f(A.a, X.x)

A.a

X.x Y.y

A.a

X.x Y.y

A.a

X.x Y.y

Direction of

value dependence

A dependency graph depicts the flow of information
among the attribute instances in a particular parse tree

12

Evaluation Orders for SDD 's (Cont.)

• Edges in the dependency graph determine the
evaluation order for attribute values
– Dependency graphs cannot be cyclic

• So, dependency graph is a directed acyclic graph
(DAG)

A.a := f(X.x)
X.x := f(Y.y)
Y.y := f(A.a)

A.a

X.x Y.y

Error: cyclic dependence

A X Y

Direction of

value dependence

13

Example Annotated Parse Tree with
Dependency Graph

3 * 5

14

Example Annotated Parse Tree

D

T.type = ‘float’ L.inh = ‘float’

L.inh = ‘float’

L.inh = ‘float’ id2.entry

id1.entry

id3.entryfloat

,

,

float id1 , id2 , id3

15

Example Annotated Parse Tree with
Dependency Graph

D

T.type = ‘float’ L.inh = ‘float’

L.inh = ‘float’

L.inh = ‘float’ id2.entry

id1.entry

id3.entryfloat

,

,

float id1 , id2 , id3

16

Evaluation Order

• A topological sort of a directed acyclic graph
(DAG) is any ordering m1, m2, …, mn of the nodes
of the graph, such that if mimj is an edge, then mi

appears before mj

• Any topological sort of a dependency graph gives a
valid evaluation order of the semantic rules

• Example: Topological orders of DAG on slide 13
– 1, 2, 3, 4, 5, 6, 7, 8, 9.

– 1, 3, 5, 2, 4, 6, 7, 8, 9.

D

T1.type = ‘float’ L1.inh = ‘float’

L2.inh = ‘float’

L3.inh = ‘float’ id2.entry

id1.entry

id3.entryfloat

,

,

17

Example Parse Tree with
Topologically Sorted Actions

1

2

3

4 5 6

7 8

9 10

Topological sort:
1. Get id1.entry
2. Get id2.entry
3. Get id3.entry
4. T1.type=‘float’
5. L1.inh=T1.type
6. addtype(id3.entry, L1.inh)
7. L2.inh=L1.inh
8. addtype(id2.entry, L2.inh)
9. L3.inh=L2.inh
10. addtype(id1.entry, L3.inh)

float id1 , id2 , id3

18

L-Attributed Definitions

• A syntax-directed definition is L-attributed if each
inherited attribute of Xj on the right side of
production A X1 X2 … Xn depends only on

1. the attributes of the symbols X1, X2, …, Xj-1

2. the inherited attributes of A

• L-attributed definitions allow for a natural order of
evaluating attributes: depth-first and left to right

• Note: every S-attributed syntax-directed definition is also
L-attributed

A.a

X1.x X2.x
Shown: dependences
of inherited attributes

3. Applications of SDD
Construction of Syntax Trees

19

S-attributed Definition for Simple Expressions

Note: This is a S-attributed definition, then
can be done during bottom-up parsing

Example: Syntax Tree for a - 4 + c
20

Steps in the construction
of the syntax tree

Constructing Syntax Tree
During Top-Down Parsing

21

L-attributed Definition for Simple Expression

Example: Dependency Graph for a-4+c

22

2) p1 == new Leaf (id, entry-a) ;
4) p2 == new Leaf (num, 4) ;
6) p3 == new Node('-', pl, p2) ;
8) p4 == new Leaf (id, entry-c) ;
9) p5 == new Node('+', p3, p4) ;

Steps

The Structure of a Type

23

Type expression
for int[2][3]

T generates either a basic type or an array type

int[2][3] array(2, array(3, integer))

Annotated Parse Tree for int[2][3]

24

