5. Bottom-Up Parsing

- LR methods (Left-to-right, Rightmost derivation)
- SLR, Canonical LR, LALR
- Other special cases:
- Shift-reduce parsing
- Operator-precedence parsing

Shift-Reduce Parsing

Grammar:
$S \rightarrow \mathbf{a} A B \mathbf{e}$ $A \rightarrow A \mathbf{b} \mathbf{c} \mid \mathbf{b}$ $B \rightarrow \mathbf{d}$

These match $\longrightarrow S$ production's right-hand sides

Handles

A handle is a substring of grammar symbols in a right-sentential form that matches a right-hand side of a production

$\begin{array}{lc}\mathbf{a} \underline{b} \mathbf{b} \mathbf{c d e} & \\ \mathbf{a} A \underline{\mathbf{b}} \mathbf{c d e} & \text { NOT a handle, because } \\ \mathbf{a} A A & \text { further reductions will fail } \\ \ldots ? & \text { (result is not a sentential form) }\end{array}$

Stack Implementation of Shift-Reduce Parsing

Conflicts

- Shift-reduce and reduce-reduce conflicts are caused by
- The limitations of the LR parsing method (even when the grammar is unambiguous)
- Ambiguity of the grammar

Shift-Reduce Parsing: Shift-Reduce Conflicts

Shift-Reduce Parsing: Reduce-Reduce Conflicts

6. LR Parsing: Simple LR

- LR(k) parsing
- From left to right scanning of the input
- Rightmost derivation in reverse
- k lookahead symbols, only consider $\mathrm{k}=0$, or 1
- Why LR Parsers
- Can recognize virtually all programming language constructs
- the most general nonbacktracking shift-reduce parsing method
- Can detect a syntactic error as soon as possible
- Powerful than LL parsing methods

LR(0) Items of a Grammar

- An $L R(0)$ item of a grammar G is a production of G with a \cdot at some position of the right-hand side
- Thus, a production

$$
A \rightarrow X Y Z
$$

has four items:

$$
\begin{aligned}
& {[A \rightarrow \bullet X Y Z]} \\
& {[A \rightarrow X \bullet Y Z]} \\
& {[A \rightarrow X Y \bullet Z]} \\
& {[A \rightarrow X Y Z \bullet]}
\end{aligned}
$$

- Note that production $A \rightarrow \varepsilon$ has one item $[A \rightarrow \bullet]$

The closure Operation for $\operatorname{LR}(0)$ Items

1. Start with closure $(I)=I$
2. If $[A \rightarrow \alpha \bullet B \beta] \in \operatorname{closure}(I)$ then for each production $B \rightarrow \gamma$ in the grammar, add the item $[B \rightarrow \odot \gamma]$ to I if not already in I
3. Repeat 2 until no new items can be added

The closure Operation Example

$$
\begin{aligned}
& \text { closure }\left(\left\{\left[E^{\prime} \rightarrow \cdot E\right]\right\}\right)= \\
& \begin{aligned}
\left\{\left[E^{\prime} \rightarrow \cdot E\right]\right\} \square & \left\{\left[E^{\prime} \rightarrow \cdot E\right] \quad\{ \right. \\
& {[E \rightarrow \cdot E+T] } \\
& {[E \rightarrow \cdot T]\} \square }
\end{aligned} \\
& \operatorname{Add}[E \rightarrow \bullet \gamma] \\
& \begin{array}{ll}
\left\{\left[E^{\prime} \rightarrow \bullet E\right]\right. & \left\{\left[E^{\prime} \rightarrow \bullet E\right]\right. \\
{[E \rightarrow \bullet E+T]} & {[E \rightarrow \bullet E+T]} \\
{[E \rightarrow \bullet T]} & {[E \rightarrow \bullet T]} \\
{\left[T \rightarrow \bullet T^{*} F\right]} & {\left[T \rightarrow \bullet T^{*} F\right]} \\
[T \rightarrow \bullet F]\} \square & \begin{array}{ll}
& {[T \rightarrow \bullet F]} \\
& {[F \rightarrow \bullet(E)]} \\
\text { Add }[F \rightarrow \bullet \gamma] & [F \rightarrow \bullet \mathbf{i d}]\}
\end{array} \\
&
\end{array} \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T^{*} F \mid F \\
& F \rightarrow(E) \\
& F \rightarrow \text { id }
\end{aligned}
$$

The goto Operation for $\operatorname{LR}(0)$ Items

1. For each item $[A \rightarrow \alpha \bullet X \beta] \in I$, add the set of items $\operatorname{closure}(\{[A \rightarrow \alpha X \cdot \beta]\})$ to $\operatorname{goto}(I, X)$ if not already there
2. Repeat step 1 until no more items can be added to $\boldsymbol{g o t o}(I, X)$

- Intuitively, the goto function is used to define the transitions in the LR(0) automaton for a grammar.
- The states of the automaton correspond to sets of items, and $\operatorname{goto}(\mathrm{I}, \mathrm{X})$ specifies the transition from the state for I under input X .

The goto Operation Example 1

Suppose

$$
\begin{aligned}
I=\{ & {\left[E^{\prime} \rightarrow \bullet E\right] } \\
& {[E \rightarrow \bullet E+T] } \\
& {[E \rightarrow \bullet T] } \\
& {\left[T \rightarrow \bullet T^{*} F\right] } \\
& {[T \rightarrow \bullet F] } \\
& {[F \rightarrow \bullet(E)] } \\
& {[F \rightarrow \bullet \mathbf{i d}]\} }
\end{aligned}
$$

Then $\operatorname{goto}(I, E)$
$=\operatorname{closure}\left(\left\{\left[E^{\prime} \rightarrow E \bullet, E \rightarrow E \bullet+T\right]\right\}\right)$
$=\left\{\left[E^{\prime} \rightarrow E \bullet\right],[E \rightarrow E \bullet+T]\right\}$

Grammar:

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow \mathbf{(E)} \\
& F \rightarrow \mathbf{i d}
\end{aligned}
$$

The goto Operation Example 2

Suppose $I=\left\{\left[E^{\prime} \rightarrow E \bullet\right],[E \rightarrow E \bullet+T]\right\}$
Then $\operatorname{goto}(I,+)=\operatorname{closure}(\{[E \rightarrow E+\cdot T]\})=\{[E \rightarrow E+\bullet T]$
$[T \rightarrow \bullet T * F]$
$[T \rightarrow \bullet F]$
Grammar:
$E \rightarrow E+T \mid T$
$[F \rightarrow \bullet(E)]$
$[F \rightarrow \bullet \mathbf{i d}]\}$
$T \rightarrow T * F \mid F$
$F \rightarrow(E)$
$F \rightarrow$ id

Constructing the Canonical LR(0) Collection of a Grammar

1. The grammar is augmented with a new start symbol S^{\prime} and production $S^{\prime} \rightarrow S$
2. Initially, set $C=\left\{\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \cdot S\right]\right\}\right)\right\}$ (this is the start state of the DFA)
3. For each set of items $I \in C$ and each grammar symbol $X \in(N \cup T)$ such that $\operatorname{goto}(I, X) \notin C$ and $\boldsymbol{g o t o}(I, X) \neq \varnothing$, add the set of items $\operatorname{goto}(I, X)$ to C
4. Repeat 3 until no more sets can be added to C

Use of the LR(0) Automaton

The following Figure shows the actions of a shift-reduce parser on input id * id, using the $\operatorname{LR}(0)$ automaton shown on previous slide.

LINE	STACK	SymboLS	InPUT	Action
(1)	0	$\$$	id *id $\$$	shift to 5
(2)	05	$\$$ id	*id $\$$	reduce by $F \rightarrow$ id
(3)	03	$\$ F$	*id $\$$	reduce by $T \rightarrow F$
(4)	02	$\$ T$	*id $\$$	shift to 7
(5)	027	$\$ T *$	id $\$$	shift to 5
(6)	0275	$\$ T *$ id	$\$$	reduce by $F \rightarrow$ id
(7)	02710	$\$ T * F$	$\$$	reduce by $T \rightarrow T * F$
(8)	02	$\$ T$	$\$$	reduce by $E \rightarrow T$
(9)	01	$\$ E$	$\$$	accept

LR(k) Parsers: Use a DFA for Shift/Reduce Decisions

$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$
Can only
reduce $A \rightarrow \mathbf{a}$
$(\operatorname{not} B \rightarrow \mathbf{a})$

Use of the $\operatorname{LR}(0)$ Automaton

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine
Grammar: if a handle is on top of the stack

$S \rightarrow C$					
$C \rightarrow A B$		Stack	Symbols	Input	Action
$A \rightarrow \mathbf{a}$		0	\$	as\$	shift to 3
$B \rightarrow \mathbf{a}$		03	\$a	a\$	reduce $A \rightarrow \mathbf{a}$
-		02	\$A	a\$	shift to 5
State I_{0} :	$\operatorname{goto}\left(I_{0}, \mathbf{a}\right)$	025 024	\$Aa	$\begin{aligned} & \$ \\ & \$ \end{aligned}$	$\begin{aligned} & \text { reduce } B \rightarrow \mathbf{a} \\ & \text { reduce } C \rightarrow A B \end{aligned}$
$S \rightarrow{ }^{\circ} \mathrm{C}$	\rightarrow State $I_{3}:$	01	\$C	\$	accept ($S \rightarrow C$)

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine

> Grammar: $S \rightarrow C$ $C \rightarrow A B$ $A \rightarrow \mathbf{a}$ $B \rightarrow \mathbf{a}$ if a handle is on top of the stack

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine

> Grammar: $S \rightarrow C$ $C \rightarrow A B$ $A \rightarrow \mathbf{a}$ $B \rightarrow \mathbf{a}$

State I_{2} : if a handle is on top of the stack
$C \rightarrow A \cdot B$
$B \rightarrow \cdot \mathbf{a}$$\rightarrow \begin{aligned} & \text { State } I_{5}: \\ & B \rightarrow \mathbf{a} \cdot\end{aligned}$

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine
Grammar:
$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$

State I_{2} : if a handle is on top of the stack $C \rightarrow A \cdot B$
$B \rightarrow \bullet \mathbf{a}$$\rightarrow \begin{aligned} & \text { State } I_{4}: \\ & C \rightarrow A B \bullet\end{aligned}$

Stack	Symbols	Input	Action
0	$\$$	$\mathbf{a a \$}$	shift to 3
03	$\mathbf{\$ a}$	$\mathbf{a \$}$	reduce $A \rightarrow \mathbf{a}$
02	$\mathbf{\$ A}$	$\mathbf{a \$}$	shift to 5
025	$\$$ Aa	$\mathbf{\$}$	reduce $B \rightarrow \mathbf{a}$
024	$\$ A B$	$\mathbf{\$}$	reduce $C \rightarrow A B$
01	$\$ C$	$\mathbf{\$}$	accept $(S \rightarrow C)$

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine

Grammar:
$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$

State $I_{0}:$	goto $\left(I_{0}, C\right)$
$S \rightarrow \bullet C$	\rightarrow
$C \rightarrow \bullet A B$	State $I_{1}:$
$S \rightarrow C \cdot$	

DFA for Shift/Reduce Decisions

The states of the DFA are used to determine
Grammar:
$S \rightarrow C$
$C \rightarrow A B$
$A \rightarrow \mathbf{a}$
$B \rightarrow \mathbf{a}$

State $I_{0}:$	
$S \rightarrow \bullet C$	goto $\left(I_{0}, C\right)$
$S \rightarrow \bullet A B$	
$C \rightarrow \bullet \mathbf{a}$	$\rightarrow+$State $I_{1}:$ $S \rightarrow C \cdot$

Model of an LR Parser

LR Parsing (Driver)

$$
X_{1} X_{2} \ldots X_{m} a_{i} a_{i+1} \ldots a_{n} \longleftarrow \text { right-sentential form }
$$

Configuration ($=$ LR parser state):

$$
\underbrace{\left(s_{0} s_{1} s_{2} \ldots s_{m}\right.}_{\text {stack }}, \underbrace{a_{i} a_{i+1} \ldots a_{n} \$}_{\text {input }})
$$

If action $\left[s_{m}, a_{i}\right]=\operatorname{shift} s$ then push s, and advance input:

$$
\left(s_{0} s_{1} s_{2} \ldots s_{m} s, \quad a_{i+1} \ldots a_{n} \$\right)
$$

If action $\left[s_{m}, a_{i}\right]=$ reduce $\mathrm{A} \rightarrow \beta$ and goto $\left[s_{m-r}, A\right]=s$ with $r=|\beta|$ then pop r symbols, and push s :

$$
\left(s_{0} s_{1} s_{2} \ldots s_{m-r} s, \quad a_{i} a_{i+1} \ldots a_{n} \$\right)
$$

If action $\left[s_{m}, a_{i}\right]=$ accept then stop
If action $\left[s_{m}, a_{i}\right]=$ error then attempt recovery

Example LR(0) Parsing Table

SLR Grammars

- SLR (Simple LR): SLR is a simple extension of LR(0) shift-reduce parsing
- SLR eliminates some conflicts by populating the parsing table with reductions $A \rightarrow \alpha$ on symbols in FOLLOW (A)

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise the same as $\operatorname{LR}(0)$

> State $I_{1}:$ $S \rightarrow E \cdot$

State I_{3} : $E \rightarrow \mathbf{i d}+\bullet E$

State I_{4} :
$E \rightarrow \mathbf{i d}+E \cdot$

SLR Parsing

- An $\operatorname{LR}(0)$ state is a set of $\operatorname{LR}(0)$ items
- An $\operatorname{LR}(0)$ item is a production with a $\cdot(\operatorname{dot})$ in the right-hand side
- Build the LR(0) DFA by
- Closure operation to construct $\operatorname{LR}(0)$ items
- Goto operation to determine transitions
- Construct the SLR parsing table from the DFA
- LR parser program uses the SLR parsing table to determine shift/reduce operations

Constructing SLR Parsing Tables

1. Augment the grammar with $S^{\prime} \rightarrow S$
2. Construct $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$, the collection of sets of $L R(0)$ items. State i is constructed from I_{i}.
3. If $[A \rightarrow \alpha \cdot a \beta] \in I_{i}$ and $\boldsymbol{g o t o}\left(I_{i}, a\right)=I_{j}$ then set action $[i$, $a]=\operatorname{shift} j$, where a is a terminal
4. If $[A \rightarrow \alpha \cdot] \in I_{i}$ then set action $[i, a]=$ reduce $\mathrm{A} \rightarrow \alpha$ for all a $\in \operatorname{FOLLOW}(A)$ (apply only if $A \neq S^{\prime}$)
5. If $\left[S^{\prime} \rightarrow S^{\bullet}\right]$ is in I_{i} then set action $[i, \$]=$ accept
6. If $\boldsymbol{g o t o}\left(I_{i}, A\right)=I_{j}$ then set $\boldsymbol{g o t o}[i, A]=j$
7. Repeat 3-6 until no more entries added
8. The initial state i is the I_{i} holding item $\left[S^{\prime} \rightarrow \cdot S\right]$

Example Grammar and LR(0) Items

Augmented $\quad I_{0}=\operatorname{closure}\left(\left\{\left[C^{\prime} \rightarrow \bullet C\right]\right\}\right)$
grammar:
$I_{1}=\operatorname{goto}\left(I_{0}, C\right)=\operatorname{closure}\left(\left\{\left[C^{\prime} \rightarrow C^{\bullet}\right]\right\}\right)$

1. $C^{\prime} \rightarrow C \quad$...
2. $C \rightarrow A B$
3. $A \rightarrow \mathbf{a}$
4. $B \rightarrow \mathbf{a}$

Example SLR Parsing Table

Another Example SLR Parse Table

Grammar: state		action						goto		
		id	+	*	()	\$	E	T	F
1. $E \rightarrow E+T$	0	s5			s4			1	2	3
2. $E \rightarrow T$	1		s6				acc			
3. $T \rightarrow T * F \square$	1		s6				acc			
4. $T \rightarrow F$	2		r2	s7		r2	r2			
5. $F \rightarrow(E)$	3		r4	r4		r4	r4			
6. $F \rightarrow$ id	4	s5			s4			8	2	3
	5		r6	r6		r6	r6			
		(s5)			s4				9	3
Shift \& goto 5	7	s5			s4					10
	8		s6			s11				
	9		r1	s7		r1	r1			
Reduce by	10		r3	r3		r3	r3			
production \#1	11		r5	r5			r5			

Moves of an SLR parser on id * id + id Using the SLR Parse Table on Previous Slide

	Stack	SYMBOLS	InPuT	ACTION
(1)	0		id $*$ id +id \$	shift
(2)	05	id	* id + id \$	reduce by $F \rightarrow$ id
(3)	03	F	* id + id \$	reduce by $T \rightarrow F$
(4)	02	T	* id + id \$	shift
(5)	027	T*	id + id \$	shift
(6)	0275	$T *$ id	+ id \$	reduce by $F \rightarrow \mathbf{i d}$
(7)	02710	$T * F$	+id\$	reduce by $T \rightarrow T * F$
(8)	02	T	+ id \$	reduce by $E \rightarrow T$
(9)	01	E	+ id \$	shift
(10)	016	$E+$	id \$	shift
(11)	0165	$E+\mathrm{id}$	\$	reduce by $F \rightarrow \mathbf{i d}$
(12)	0163	$E+F$	\$	reduce by $T \rightarrow F$
(13)	0169	$E+T$	\$	reduce by $E \rightarrow E+T$
(14)	01	E	\$	accept

SLR, Ambiguity, and Conflicts

- SLR grammars are unambiguous
- But not every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

$$
\begin{array}{ll}
\text { 1. } S \rightarrow L=R & \text { 2. } S \rightarrow R \\
\text { 3. } L \rightarrow * R & \text { 4. } L \rightarrow \text { id }
\end{array}
$$

5. $R \rightarrow L$

Viable Prefixes

- During the LR parsing, the stack contents must be a prefix of a right-sentential form
- If the stack holds α, the rest of input is x
- There is a right-most derivation $S \underset{r m}{*} \alpha x$
- But, not all prefixes of right-sentential forms can appear on the stack
- The parser must not shift past the handle
- Example: Suppose $E \underset{r m}{\underset{\Rightarrow}{*}} F * \mathbf{i d} \underset{r m}{\Rightarrow}(E) * \mathbf{i d}$, the stack must not hold $(E) *$, as (E) is a handle.
- The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes

Viable Prefixes (Cont.)

- A viable prefix is a prefix of a right-sentential form that does not continue past the right end of the rightmost handle of that sentential form
- We say item $\mathrm{A} \rightarrow \beta_{1} \bullet \beta_{2}$ is valid for a viable prefix $\alpha \beta_{1}$ if there is a derivation $S \underset{r m}{*} \alpha A w \underset{r m}{\Rightarrow} \alpha \beta_{1} \bullet \beta_{2} w$.
- $\mathrm{A} \rightarrow \beta_{1} \bullet \beta_{2}$ is valid for $\alpha \beta_{1}$ and $\alpha \beta_{1}$ is on the parsing stack
- If $\beta_{2} \neq \varepsilon$, then shift
$-\beta_{2}=\varepsilon$, then reduce

Viable Prefixes (Cont.)

- The set of valid items for a viable prefix δ is exactly the set of items reached from the initial state along the path labeled δ in the $\operatorname{LR}(0)$ automaton for the grammar
- Example: See state 7 of automaton on slide 16.
$T \rightarrow T * \bullet F, F \rightarrow \bullet(E)$, and $F \rightarrow \bullet i d$ are valid items for E+T*

$$
\begin{array}{|ccc|}
\hline E^{\prime} \underset{r m}{\Rightarrow} E & E^{\prime} \Rightarrow \underset{r m}{\Rightarrow} E & E^{\prime} \underset{r m}{\Rightarrow} E \\
\underset{r m}{\Rightarrow} E+T & \underset{r m}{\Rightarrow} E+T & \underset{r m}{\Rightarrow} E+T \\
\underset{r m}{\Rightarrow} E+T * F & \underset{r m}{\Rightarrow} E+T * F & \underset{r m}{\Rightarrow} E+T * F \\
& \underset{r m}{\Rightarrow} E+T *(E) & \underset{r m}{\Rightarrow} E+T * \mathbf{i d} \\
\hline
\end{array}
$$

7. LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- LR(1) item $=\operatorname{LR}(0)$ item + lookahead
$\mathrm{LR}(0)$ item:
$[A \rightarrow \alpha \bullet \beta]$

LR(1) item:
$[A \rightarrow \alpha \cdot \beta, a]$

SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1. $S \rightarrow L=R$
2. $S \rightarrow R$
3. $L \rightarrow * R$
4. $L \rightarrow \mathbf{i d}$
5. $R \rightarrow L$

Should not reduce on $=$, because no right-sentential form begins with $R=$

LR(1) Items

- An $L R(1)$ item

$$
[A \rightarrow \alpha \cdot \beta, a]
$$

contains a lookahead terminal a, meaning α already on top of the stack, expect to parse βa

- For items of the form

$$
[A \rightarrow \alpha \cdot a]
$$

the lookahead a is used to reduce $A \rightarrow \alpha$ only if the next lookahead of the input is a

- For items of the form
$[A \rightarrow \alpha \bullet \beta, a]$
with $\beta \neq \varepsilon$ the lookahead has no effect

The Closure Operation for LR(1) Items

1. Start with $\operatorname{closure}(I)=I$
2. If $[A \rightarrow \alpha \bullet B \beta, a] \in \operatorname{closure}(I)$ then for each production $B \rightarrow \gamma$ in the grammar and each terminal $b \in \operatorname{FIRST}(\beta a)$, add the item $[B \rightarrow \boldsymbol{\gamma}, b]$ to closure(I) if not already in closure(I)
3. Repeat 2 until no new items can be added

The Goto Operation for LR(1) Items

1. For each item $[A \rightarrow \alpha \bullet X \beta, a] \in I$, add the set of items closure $(\{[A \rightarrow \alpha X \bullet \beta, a]\})$ to $\operatorname{goto}(I, X)$ if not already there
2. Repeat step 1 until no more items can be added to $\operatorname{goto}(I, X)$

Constructing the set of LR(1) Items of a Grammar

1. Augment the grammar with a new start symbol S^{\prime} and production $S^{\prime} \rightarrow S$
2. Initially, set $C=\left\{\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right]\right\}\right)\right\}$ (this is the start state of the DFA)
3. For each set of items $I \in C$ and each grammar symbol $X \in(N \cup T)$ such that $\operatorname{goto}(I, X) \notin C$ and $\operatorname{goto}(I, X) \neq \varnothing$, add the set of items $\operatorname{goto}(I, X)$ to C
4. Repeat 3 until no more sets can be added to C

Example Grammar and LR(1) Items

- Augmented LR (1) grammar (4.55):

$$
\begin{aligned}
& S \rightarrow S \\
& S \rightarrow C C \\
& C \rightarrow \mathrm{c}|\mathrm{C}|
\end{aligned}
$$

- LR (1) items

$$
I_{0}: \quad S \rightarrow S, \$
$$

$$
S \rightarrow C C, \$
$$

$$
C \rightarrow c C, c / d
$$

$$
\begin{array}{llll}
I_{1}: & S^{\prime} \rightarrow S \cdot, \$ & I_{5}: & S \rightarrow C C \cdot, \$ \\
I_{2}: & S \rightarrow C \cdot C, \$ & I_{6}: & C \rightarrow c \cdot C, \$ \\
& C \rightarrow \cdot c C, \$ & & C \rightarrow c C, \$ \\
& C \rightarrow d, \$ & & C \rightarrow d, \$ \\
I_{3}: & C \rightarrow c \cdot C, c / d & I_{7}: & C \rightarrow d \cdot, \$ \\
& C \rightarrow c C, c / d \\
& C \rightarrow \cdot d, c / d & I_{8}: & C \rightarrow c C \cdot, c / d \\
I_{4}: & C \rightarrow d \cdot, c / d & I_{9}: & C \rightarrow c C \cdot, \$
\end{array}
$$

LR(1) items and goto Operation for Grammar (4.55)

$$
\begin{aligned}
& I_{0}: \begin{array}{lll}
S \rightarrow S, \$ & \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~S}\right)=\mathrm{I}_{1} \\
S \rightarrow C C, \$ & \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{C}\right)=\mathrm{I}_{2}
\end{array} \quad I_{4}: \quad C \rightarrow d, c / d \\
& C \rightarrow \cdot c C, c / d \quad \operatorname{goto}\left(\mathrm{I}_{\mathrm{L}} \mathrm{c}\right)=\mathrm{I}_{3} \\
& C \rightarrow \cdot d, c / d \quad \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~d}\right)=\mathrm{I}_{4} \\
& I_{1}: \quad S^{\prime} \rightarrow S \cdot, \$ \\
& I_{6}: \quad C \rightarrow c \cdot C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{C}\right)=\mathrm{I}_{9} \\
& C \rightarrow c C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{c}\right)=\mathrm{I}_{6} \\
& C \rightarrow \cdot d, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{~d}\right)=\mathrm{I}_{7} \\
& I_{2}: \begin{array}{ll}
& S \rightarrow C \cdot C, \$ \\
& C \rightarrow c, \$, \$ \\
& \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{C}\right)=\mathrm{I}_{5} \\
& \operatorname{gotot}\left(\mathrm{I}_{2}, \mathrm{c}\right)=\mathrm{I}_{6}
\end{array} \quad I_{7}: \quad C \rightarrow d, \$ \\
& I_{8}: \quad C \rightarrow c C \cdot, c / d \\
& I_{3}: \quad C \rightarrow c \cdot C, c / d \quad \operatorname{goto}\left(\mathrm{I}_{3}, \mathrm{C}\right)=\mathrm{I}_{8} \\
& C \rightarrow c C, c / d \quad \operatorname{goto}\left(\mathrm{I}_{3}, \mathrm{c}\right)=\mathrm{I}_{3} \\
& I_{9}: \quad C \rightarrow c C \cdot, \$ \\
& C \rightarrow \cdot d, c / d \quad \operatorname{goto}\left(\mathrm{I}_{3}, \mathrm{~d}\right)=\mathrm{I}_{4}
\end{aligned}
$$

Example Grammar and LR(1) Items

- Unambiguous LR(1) grammar:

$$
\begin{aligned}
& S \rightarrow L=R \\
& S \rightarrow R \\
& L \rightarrow * R \\
& L \rightarrow \text { id } \\
& R \rightarrow L
\end{aligned}
$$

- Augment with $S^{\prime} \rightarrow S$
- LR(1) items (next slide)

$$
\begin{aligned}
& I_{0}:\left[S^{\prime} \rightarrow \cdot S, \$\right] \quad \operatorname{goto}\left(I_{0}, S\right)=I_{1} \quad I_{6}:[S \rightarrow L=\bullet R, \$] \quad \operatorname{goto}\left(I_{6}, R\right)=I_{9} \\
& {[S \rightarrow \bullet L=R, \$] \quad \operatorname{goto}\left(I_{0}, L\right)=I_{2}} \\
& {[R \rightarrow \bullet L, \$]} \\
& \operatorname{goto}\left(I_{6}, L\right)=I_{10} \\
& {[S \rightarrow \bullet R, \$] \quad \operatorname{goto}\left(I_{0}, R\right)=I_{3}} \\
& {[L \rightarrow \bullet * R, \$]} \\
& \operatorname{goto}\left(I_{6}, *\right)=I_{11} \\
& {[L \rightarrow \bullet * R \text {, }=/ \$] \quad \operatorname{goto}\left(I_{0}, *\right)=I_{4}} \\
& {[L \rightarrow \text { •id, }=/ \$] \quad \operatorname{goto}\left(I_{0}, \mathbf{i d}\right)=I_{5}} \\
& {[R \rightarrow \bullet L, \$]} \\
& I_{1}:\left[S^{\prime} \rightarrow S^{\bullet}, \$\right] \\
& I_{2}:[S \rightarrow L \cdot=R, \$] \quad \operatorname{goto}\left(I_{2},=\right)=I_{6} \\
& {[R \rightarrow L \bullet \$]} \\
& I_{3}:[S \rightarrow R \cdot, \$] \\
& I_{4}:[L \rightarrow * \cdot R,=/ \$] \quad \operatorname{goto}\left(I_{4}, R\right)=I_{7} \\
& {[R \rightarrow \bullet L,=/ \$] \quad \operatorname{goto}\left(I_{4}, L\right)=I_{8}} \\
& {[L \rightarrow \bullet * R,=/ \$] \quad \operatorname{goto}\left(I_{4}, *\right)=I_{4}} \\
& {[L \rightarrow \bullet \mathbf{i d},=/ \$] \quad \operatorname{goto}\left(I_{4}, \mathbf{i d}\right)=I_{5}} \\
& I_{5}:[L \rightarrow \mathbf{i d} \bullet,=/ \$] \\
& I_{13}:[L \rightarrow * R \bullet, \$]
\end{aligned}
$$

Constructing Canonical LR(1) Parsing Tables

1. Augment the grammar with $S^{\prime} \rightarrow S$
2. Construct the set $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of $\operatorname{LR}(1)$ items
3. If $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and $\operatorname{goto}\left(I_{i}, a\right)=I_{j}$ then set action $[i, a]=\operatorname{shift} j$
4. If $[A \rightarrow \alpha \cdot, a] \in I_{i}$ then set action $[i, a]=$ reduce $\mathrm{A} \rightarrow \alpha$ (apply only if $A \neq S^{\prime}$)
5. If $\left[S^{\prime} \rightarrow S \cdot, \$\right]$ is in I_{i} then set action $[i, \$]=$ accept
6. If $\operatorname{goto}\left(I_{i}, A\right)=I_{j}$ then set $\operatorname{goto}[i, A]=j$
7. Repeat 3-6 until no more entries added
8. The initial state i is the I_{i} holding item $\left[S^{\prime} \rightarrow \cdot \mathbf{S}, \mathbf{\$}\right]$

Example Canonical LR(1) Parsing Table

Grammar:
0. S' $\rightarrow S$

1. $S \rightarrow C C$
2. $C \rightarrow c \mathrm{C}$
3. $C \rightarrow \boldsymbol{d}$

STATE	ACTION			GOTO	
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r 1		
6	s 6	s 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

Example LR(1) Parsing Table

Grammar:

1. S' $\rightarrow S$
2. $S \rightarrow L=R$
3. $S \rightarrow R$
4. $L \rightarrow$ * R
5. $L \rightarrow$ id
6. $R \rightarrow L$

	id	$*$	$=$	$\$$	S	L	R
0	s 5	s 4			1	2	3
1				acc			
2			s 6	r 6			
3				r 3			
4	s 5	s 4				8	7
5			r 5	r 5			
6	s 12	s 11				10	9
7			r 4	r 4			
8			r 6	r 6			
9				r 2			
10				r 6			
11	s 12	s 11				10	13
12				r 5			
13				r 4			

LALR Parsing

- LR(1) parsing tables have many states
- LALR parsing (Look-Ahead LR) merges two or more $\operatorname{LR}(1)$ state into one state to reduce table size
- Less powerful than LR(1)
- Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
- May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages

Constructing LALR Parsing Tables

1. Construct sets of $\operatorname{LR}(1)$ items
2. Combine LR(1) sets with sets of items that share the same first part

Grammar:
0. S' $\rightarrow S$

1. $S \rightarrow C C$
2. $C \rightarrow \boldsymbol{c} \mathrm{C}$
3. $C \rightarrow \boldsymbol{d}$
$I_{36}: \quad C \rightarrow c \cdot C, c / d / \$$ $C \rightarrow c C, c / d / \$$
$C \rightarrow \cdot d, c / d / \$$
$I_{47}: \quad C \rightarrow d \cdot, c / d / \$$
$I_{89}: \quad C \rightarrow c C \cdot, c / d / \$$

STATE	ACTION			GOTO	
	c	d	$\$$	S	C
0	s 36	s 47		1	2
1			acc		
2	s 36	s 47			5
36	s 36	s 47			89
47	r 3	r 3	r 3		
5			r 1		
89	r 2	r2	r 2		

Constructing LALR Parsing Tables

1. Construct sets of $\operatorname{LR}(1)$ items
2. Combine LR(1) sets with sets of items that share the same first part

$$
\begin{aligned}
& I_{4}:[L \rightarrow * \cdot R,=/ \$] \\
& {[R \rightarrow \cdot L,=/ \$]} \\
& {[L \rightarrow \bullet * R,=/ \$]} \\
& \text { [} L \rightarrow \text { •id, }=/ \$ \text {] } \\
& I_{11}:[L \rightarrow * \cdot R, \$] \\
& {[R \rightarrow \bullet L,=\$]} \\
& {[R \rightarrow \bullet L, \$]} \\
& {[L \rightarrow \bullet * R, \$]} \\
& \text { [} L \rightarrow \text { •id, \$] }
\end{aligned}
$$

Example Grammar and LALR Parsing Table

- Unambiguous LR(1) grammar:

$$
\begin{gathered}
S \rightarrow L=R \\
\mid R \\
L \rightarrow R \\
\rightarrow \text { id } \\
R \rightarrow L
\end{gathered}
$$

- Augment with $S^{\prime} \rightarrow S$
- LALR items (next slide)

$$
\begin{aligned}
& I_{0}:\left[S^{\prime} \rightarrow \bullet S, \$\right] \quad \operatorname{goto}\left(I_{0}, S\right)=I_{1} \quad I_{5}:[L \rightarrow \mathbf{i d} \bullet,=/ \$] \\
& {[S \rightarrow \cdot L=R, \$] \quad \operatorname{goto}\left(I_{0}, L\right)=I_{2}} \\
& {[S \rightarrow \cdot R, \$] \quad \operatorname{goto}\left(I_{0}, R\right)=I_{3}} \\
& {[L \rightarrow \bullet * R,=/ \$] \operatorname{goto}\left(I_{0}, *\right)=I_{4}} \\
& {[L \rightarrow \text { •id, }=/ \mathbf{\$}] \quad \operatorname{goto}\left(I_{0}, \mathbf{i d}\right)=I_{5}} \\
& {[R \rightarrow \cdot L, \$]} \\
& I_{1}:\left[S^{\prime} \rightarrow S^{\bullet}, \$\right] \quad \operatorname{goto}\left(I_{1}, \$\right)=\operatorname{acc} \quad I_{7}:[L \rightarrow * R \bullet,=/ \$] \\
& \begin{aligned}
I_{2}: & {[S \rightarrow L \bullet=R,=] \quad \operatorname{goto}\left(I_{2},=\right)=I_{6} } \\
& {[R \rightarrow L \bullet \$] }
\end{aligned} \\
& I_{8}:[S \rightarrow L=R \bullet, \$] \\
& I_{9}:[R \rightarrow L \cdot, \underbrace{=/ \$]}_{\uparrow} \text { Shorthand } \\
& I_{4}:[L \rightarrow * \cdot R,=/ \$] \quad \operatorname{goto}\left(I_{4}, R\right)=I_{7} \\
& {[R \rightarrow \cdot L,=/ \$] \quad \operatorname{goto}\left(I_{4}, L\right)=I_{9}} \\
& {[L \rightarrow \bullet * R,=/ \$] \operatorname{goto}\left(I_{4}, *\right)=I_{4}} \\
& {[L \rightarrow \cdot \mathbf{i d},=/ \$] \quad \operatorname{goto}\left(I_{4}, \mathbf{i d}\right)=I_{5}} \\
& \text { Shorthand } \\
& {[R \rightarrow L \cdot,=]} \\
& {[R \rightarrow L \bullet, \$]}
\end{aligned}
$$

Example LALR Parsing Table

Grammar:

1. $S^{\prime} \rightarrow S$
2. $S \rightarrow L=R$
3. $S \rightarrow R$
4. $L \rightarrow$ *R
5. $L \rightarrow$ id
6. $R \rightarrow L$

	id	$*$	$=$	$\$$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s 6	r 6			
3				r 3			
4	s 5	s 4				9	7
5			r 5	r 5			
6	s 5	s 4				9	8
7			r 4	r 4			
8				r 2			
9			r 6	r 6			

LL, SLR, LR, LALR Summary

- LL parse tables computed using FIRST/FOLLOW
- Nonterminals \times terminals \rightarrow productions
- Computed using FIRST/FOLLOW
- LR parsing tables computed using closure/goto
- LR states \times terminals \rightarrow shift/reduce actions
- LR states \times nonterminals \rightarrow goto state transitions
- A grammar is
- LL(1) if its LL(1) parse table has no conflicts
- SLR if its SLR parse table has no conflicts
- LALR if its LALR parse table has no conflicts
- LR(1) if its LR(1) parse table has no conflicts

LL, SLR, LR, LALR Grammars

8. Dealing with Ambiguous Grammars

Using Associativity and Precedence to Resolve Conflicts

- Left-associative operators: reduce
- Right-associative operators: shift
- Operator of higher precedence on stack: reduce
- Operator of lower precedence on stack: shift

$S^{\prime} \rightarrow E$	stack	symbo	input	
	0	s	${ }^{\text {id }{ }^{*} \text { d }+ \text { ids }}$	
$E \rightarrow E+E$...			
$E \rightarrow E * E$	0135	$\$^{*}{ }^{*} E$	+ids	reduce $E \rightarrow E^{*} E$
$E \rightarrow$ id				

Error Detection in LR Parsing

- An LR parser will detect an error when it consults the parsing action table and finds an error entry.
- Canonical LR parser uses full LR(1) parse tables and will never make a single reduction before recognizing the error when a syntax error occurs on the input
- SLR and LALR may still reduce when a syntax error occurs on the input, but will never shift the erroneous input symbol

Error Recovery in LR Parsing

- Panic mode
- Pop until state with a goto on a nonterminal A is found, (where A represents a major programming construct), push A
- Discard input symbols until one is found in the FOLLOW set of A
- Phrase-level recovery
- Implement error routines for every error entry in table
- Error productions
- Pop until state has error production, then shift on stack
- Discard input until symbol is encountered that allows parsing to continue

