
1

CS 4300: Compiler Theory

Chapter 4
Syntax Analysis

Xuejun Liang

2019 Fall



2

Outlines (Sections)

1. Introduction 

2. Context-Free Grammars

3. Writing a Grammar 

4. Top-Down Parsing 

5. Bottom-Up Parsing 

6. Introduction to LR Parsing: Simple LR

7. More Powerful LR Parsers 

8. Using Ambiguous Grammars 

9. Parser Generators 

2



3

1. The role of the Parser

• A parser implements a Context-Free grammar as a 
recognizer of strings

• The role of the parser in a compiler is twofold:
– To check syntax (= string recognizer)

• And to report syntax errors accurately

– To invoke semantic actions
• For static semantics checking, e.g. type checking of 

expressions, functions, etc.

• For syntax-directed translation of the source code to an 
intermediate representation

3



4

Position of Parser in Compiler Model

4

Lexical error Syntax error
Semantic error



5

5

Error Handling

• A good compiler should assist in identifying and 
locating errors
– Lexical errors: important, compiler can easily recover 

and continue
– Syntax errors: most important for compiler, can almost 

always recover
– Static semantic errors: important, can sometimes 

recover
– Dynamic semantic errors: hard or impossible to detect 

at compile time, runtime checks are required
– Logical errors: hard or impossible to detect



6

6

Viable-Prefix Property

• The viable-prefix property of parsers allows 
early detection of syntax errors
– Goal: detection of an error as soon as possible

without further consuming unnecessary input

– How: detect an error as soon as the prefix of the 
input does not match a prefix of any string in 
the language

…
for (;)
…

Error is
detected here

Prefix



7

7

Error Recovery Strategies

• Panic mode
– Discard input until a token in a set of designated 

synchronizing tokens (such as ;) is found.

• Phrase-level recovery
– Perform local correction on the input to repair the error

• Error productions
– Augment grammar with productions for erroneous 

constructs

• Global correction
– Choose a minimal sequence of changes to obtain a 

global least-cost correction



8

Representative Grammars (Expression)

8

LR grammar
• Suitable for bottom-up parsing.  
• Not suitable for top-down

parsing 
• Because it is left recursive

LL grammar
• Non-left-recursive
• Suitable for top-down 

parsing

Ambiguous Grammar



9

9

2. Context-Free Grammars (Recap) 

• Context-free grammar is a 4-tuple
G = (N, T, P, S) where

– T is a finite set of tokens (terminal symbols)

– N is a finite set of nonterminals

– P is a finite set of productions of the form
  

where   (NT)* N (NT)* and   (NT)*

– S  N is a designated start symbol



10

10

Notational Conventions

• Terminals
a,b,c,…  T
specific terminals: 0, 1, id, +

• Nonterminals
A,B,C,…  N
specific nonterminals: expr, term, stmt

• Grammar symbols
X,Y,Z  (NT)

• Strings of terminals
u,v,w,x,y,z  T*

• Strings of grammar symbols
,,  (NT)*



11

11

Derivations (Recap)

• The one-step derivation is defined by
 A     

where A   is a production in the grammar
• In addition, we define

–  is leftmost lm if  does not contain a nonterminal
–  is rightmost rm if  does not contain a nonterminal
– Transitive closure * (zero or more steps)
– Positive closure + (one or more steps)

• The language generated by G is defined by
L(G) = {w  T* | S + w}



12

12

Derivation (Example)

Grammar G = ({E}, {+,*,(,),-,id}, P, E) with
productions P =

E  E + E | E * E | ( E ) | - E | id

E  - E  - id

E * E

E + id * id + id

E rm E + E rm E + id rm id + id

Example derivations:

E * id + id



13

13

Language Classification

• A grammar G is said to be
– Regular if it is right linear where each production is of 

the form
A  w B or A  w

or left linear where each production is of the form
A  B w or A  w

– Context free if each production is of the form
A  

where A  N and   (NT)*
– Context sensitive if each production is of the form

 A     
where A  N, ,,  (NT)*, || > 0

– Unrestricted



14

14

Chomsky Hierarchy

L(regular)  L(context free) 
L(context sensitive)  L(unrestricted)

Where L(T) = { L(G) | G is of type T }
That is: the set of all languages

generated by grammars G of type T

L1 = { anbn | n  1 } is context free, but not regular

L2 = { wcw | w is in L(a|b)*} is context sensitive

Every finite language is regular! 
(construct a FSA for strings in L(G))

Examples:

L3 = { anbmcndm | n  1 } is context sensitive



15

3. Lexical Versus Syntactic Analysis

• Why use regular expressions to define the lexical 
syntax of a language?
– Quite simple, more concise and easier-to-understand

– More efficient lexical analyzers can be constructed 
automatically from regular expressions

– Regular expressions are most useful for describing the 
structure of constructs such as identifiers, constants, 
keywords, and white space. 

– Grammars are most useful for describing nested 
structures such as balanced parentheses, matching 
begin-end's, corresponding if-then-else's, and so on.

15



16

Eliminating Ambiguity

16

Ambiguous grammar: "dangling else"

Unambiguous grammar for if-then-else statements

if E1 then if E2 then S1 else S2



17

17

• A grammar is left recursive if it has a nonterminal 
A such that there is a derivation A A  for some 
string .

• When a grammar is left recursive then a predictive 
parser loops forever on certain inputs.

• Immediate left recursion, where there is a 
production of the form A  A .

Left Recursion

A   R
|  R

R   R
| 

A  A 
| 
| 



18

18

Algorithm to eliminate left recursion

Input: Grammar G with no cycles or -productions

Arrange the nonterminals in some order A1, A2, …, An

for i = 1, …, n {
for j = 1, …, i-1 {

replace each
Ai  Aj 

with
Ai  1  | 2  | … | k 

where
Aj  1 | 2 | … | k

}
eliminate the immediate left recursion in Ai

}



19

19

Immediate Left-Recursion Elimination

Rewrite every left-recursive production

A  A 
|  A 
| 
|  

A   A
|  A

A  A
|  A
| 

into a right-recursive production:



20

20

Example Left Recursion Elim.

Choose arrangement: S, A

i = 1:

i = 2, j = 1: Replace S in A  S d with A a | b

Nothing to do

Eliminate the immediate left recursion in A



21

21

Example Left Recursion Elim.
A  B C | a
B  C A | A b
C  A B | C C | a

Choose arrangement: A, B, C

i = 1: nothing to do
i = 2, j = 1: B  C A | A b

 B  C A | B C b | a b
(imm) B  C A BR | a b BR

BR  C b BR | 
i = 3, j = 1: C  A B | C C | a

 C  B C B | a B | C C | a
i = 3, j = 2: C  B C B | a B | C C | a

 C  C A BR C B | a b BR C B | a B | C C | a
(imm) C  a b BR C B CR | a B CR | a CR

CR  A BR C B CR | C CR | 



22

22

Left Factoring

• When a nonterminal has two or more productions whose 
right-hand sides start with the same grammar symbols, the 
grammar is not LL(1) and cannot be used for predictive 
parsing

• Replace productions
A   1 |  2 | … |  n | 

with
A   AR | 
AR  1 | 2 | … | n

• Example:



23

23

4. Top-Down Parsing
• Constructing a parse tree for the input string, starting from 

the root and creating the nodes of the parse tree in preorder

• Equivalently, finding the leftmost derivation for the input 
string

Grammar:
E  T + T
T  ( E )
T  - E
T  id

Leftmost derivation:
E lm T + T
lm id + T
lm id + id

E E

T

+

T

idid

E

TT

+

E

T

+

T

id



24

24

Parsing Methods

• Universal (any C-F grammar)
– Cocke-Younger-Kasimi
– Earley

• Top-down (C-F grammar with restrictions)
– Recursive descent (predictive parsing)
– LL (Left-to-right, Leftmost derivation) methods

• Bottom-up (C-F grammar with restrictions)
– Operator precedence parsing
– LR (Left-to-right, Rightmost derivation) methods

• SLR, canonical LR, LALR



25

25

Predictive Parsing

• Eliminate left recursion from grammar

• Left factor the grammar

• Compute FIRST and FOLLOW

• Two variants:
– Recursive (recursive-descent parsing)

– Non-recursive (table-driven parsing)

• LL(k) class of grammars
– It can be used to construct predictive parsers looking k 

symbols ahead in the input.



26

26

FIRST

• FIRST() = { terminals that begin strings 
derived from  }

FIRST(a) = {a} if a  T
FIRST() = {}
FIRST(A) = A FIRST() for A  P
FIRST(X1X2…Xk) =

if for all j = 1, …, i-1 :   FIRST(Xj) then
add non- in FIRST(Xi) to FIRST(X1X2…Xk)

if for all j = 1, …, k :   FIRST(Xj) then
add  to FIRST(X1X2…Xk)



27

27

FOLLOW

• FOLLOW(A) = { the set of terminals that can
immediately follow nonterminal A }

FOLLOW(A) =
for all (B   A )  P do

add FIRST()\{} to FOLLOW(A)
for all (B   A )  P and   FIRST() do

add FOLLOW(B) to FOLLOW(A)
for all (B   A)  P do

add FOLLOW(B) to FOLLOW(A)
if A is the start symbol S then

add $ to FOLLOW(A)



28

Example

28

FIRST(F) = FIRST(T) = FIRST(E) = { (, id}

FIRST(E') = {+, } 

FIRST(T') = {*, }

FOLLOW(E) = FOLLOW(E') = {), $}

FOLLOW(T) = FOLLOW(T') = {+, ), $}

FOLLOW(F) = {+, *, ), $}.



29

29

LL(1) Grammar

• Predictive parsers, that is, recursive-descent parsers 
needing no backtracking, can be constructed for a 
class of grammars called LL(1)

• A grammar G is LL(1) if it is not left recursive and for 
each collection of productions

A  1 | 2 | … | n

for nonterminal A the following holds:

1. FIRST(i)  FIRST(j) =  for all i  j

2. if i *  then
2.a. j *  for all j  i
2.b. FIRST(j)  FOLLOW(A) =  for all j  i



30

30

Non-LL(1) Examples

Grammar Not LL(1) because:

S  S a | a Left recursive

S  a S | a FIRST(a S)  FIRST(a)  
S  a R | 
R  S | 

For R:
S *  and  * 

S  a R a
R  S | 

For R:
FIRST(S)  FOLLOW(R)  

S  i E t S S' | a
S'  e S | 

E  b
For S':

FIRST(e S)  FOLLOW(S')  



31

31

Using FIRST and FOLLOW in a 
Recursive-Descent Parser

expr  term rest
rest  + term rest

| - term rest
| 

term  id

procedure rest();
begin

if lookahead in FIRST(+ term rest) then
match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then
match(‘-’); term(); rest()

else if lookahead in FOLLOW(rest) then
return

else error()
end;

where FIRST(+ term rest) = { + }
FIRST(- term rest) = { - }
FOLLOW(rest) = { $ }



32

32

Non-Recursive Predictive Parsing: 
Table-Driven Parsing

• Given an LL(1) grammar G = (N, T, P, S) 
construct a table M[A,a] for A  N, a  T and use 
a driver program with a stack

Predictive parsing
program (driver)

Parsing table
M

a + b $

X

Y

Z

$

stack

input

output



33

33

Constructing an LL(1) Predictive 
Parsing Table

for each production A   {
for each a  FIRST() {

add A   to M[A,a]
}
if   FIRST() {

for each b  FOLLOW(A) {
add A   to M[A,b]

}
}

}
Mark each undefined entry in M error



34

34

Example Table

E  T E’

E’ + T E’ | 
T  F T’ 

T’ * F T’ | 
F  ( E ) | id

id + * ( ) $

E E  T E’ E  T E’

E’ E’ + T E’ E’  E’ 

T T  F T’ T  F T’

T’ T’  T’ * F T’ T’  T’ 

F F  id F  ( E )

A   FIRST() FOLLOW(A)

E  T E’ ( id $ )

E’ + T E’ +
$ )

E’  

T  F T’ ( id + $ )

T’ * F T’ *
+ $ )

T’  

F  ( E ) ( * + $ )

F  id id * + $ )



35

35

LL(1) Grammars are Unambiguous

Ambiguous grammar
S  i E t S S’ | a
S’ e S | 
E  b

a b e i t $

S S  a S  i E t S S’

S’ S’ 
S’ e S

S’ 

E E  b

A   FIRST() FOLLOW(A)

S  i E t S S’ i
e $

S  a a

S’ e S e
e $

S’  

E  b b t
Error: duplicate table entry



36

36

Predictive Parsing Program (Driver)

read w$ into the input buffer; // w is the input 
push($); push(S);
a = lookahead; // set ip to point to the first symbol of w
X = pop();
while ( X  $ ) {

if ( X is a ) a = lookahead; // advance ip;
else if ( X is a terminal ) error();
else if ( M [X, a] is an error entry ) error();
else if ( M[X, a] = X → Y1Y2 …Yk ) {

output the production X → Y1Y2 …Yk ;
push (Yk); push(Yk–l) , ... , push(Y1);

}
X = pop();

}



37

37

Example: Moves of table-driven parsing on input
id + id * id



38

38

Panic Mode Recovery

id + * ( ) $

E E  T E’ E  T E’ synch synch

E’ E’ + T E’ E’  E’ 

T T  F T’ synch T  F T’ synch synch

T’ T’  T’ * F T’ T’  T’ 

F F  id synch synch F  ( E ) synch synch

FOLLOW(E) = { ) $ }
FOLLOW(E’) = { ) $ }
FOLLOW(T) = { + ) $ }
FOLLOW(T’) = { + ) $ }
FOLLOW(F) = { + * ) $ }

Add synchronizing actions to
undefined entries based on FOLLOW

synch: the driver pops current nonterminal A and skips input till
synch token or skips input until one of FIRST(A) is found

Pro: Can be automated
Cons: Error messages are needed



39

39

Example: Moves of parsing and error recovery on 
the erroneous input  ) id * + id



40

40

Phrase-Level Recovery
Change input stream by inserting missing tokens
For example: id id is changed into id * id

insert *: driver inserts missing * and retries the production

Can then continue here

Pro: Can be fully automated
Cons: Recovery not always intuitive

id + * ( ) $

E E  T E’ E  T E’ synch synch

E’ E’ + T E’ E’  E’ 

T T  F T’ synch T  F T’ synch synch

T’ insert * T’  T’ * F T’ T’  T’ 

F F  id synch synch F  ( E ) synch synch


