CS 4300: Compiler Theory

Chapter 4 Syntax Analysis

Xuejun Liang 2019 Fall

Outlines (Sections)

- 1. Introduction
- 2. Context-Free Grammars
- 3. Writing a Grammar
- 4. Top-Down Parsing
- 5. Bottom-Up Parsing
- 6. Introduction to LR Parsing: Simple LR
- 7. More Powerful LR Parsers
- 8. Using Ambiguous Grammars
- 9. Parser Generators

1. The role of the Parser

- A parser implements a Context-Free grammar as a recognizer of strings
- The role of the parser in a compiler is twofold:
 - To check syntax (= string recognizer)
 - And to report syntax errors accurately
 - To invoke semantic actions
 - For static semantics checking, e.g. type checking of expressions, functions, etc.
 - For syntax-directed translation of the source code to an intermediate representation

Error Handling

- A good compiler should assist in identifying and locating errors
 - *Lexical errors*: important, compiler can easily recover and continue
 - Syntax errors: most important for compiler, can almost always recover
 - *Static semantic errors*: important, can sometimes recover
 - *Dynamic semantic errors*: hard or impossible to detect at compile time, runtime checks are required
 - Logical errors: hard or impossible to detect

Viable-Prefix Property

- The *viable-prefix property* of parsers allows early detection of syntax errors
 - Goal: detection of an error *as soon as possible* without further consuming unnecessary input
 - How: detect an error as soon as the prefix of the input does not match a prefix of any string in the language

Error Recovery Strategies

- Panic mode
 - Discard input until a token in a set of designated synchronizing tokens (such as ;) is found.
- Phrase-level recovery
 - Perform local correction on the input to repair the error
- Error productions
 - Augment grammar with productions for erroneous constructs
- Global correction
 - Choose a minimal sequence of changes to obtain a global least-cost correction

2. Context-Free Grammars (Recap)

- Context-free grammar is a 4-tuple G = (N, T, P, S) where
 - *T* is a finite set of tokens (*terminal* symbols)
 - -N is a finite set of *nonterminals*
 - *P* is a finite set of *productions* of the form $\alpha \rightarrow \beta$ where $\alpha \in (M \mid T) * N(M \mid T) * \text{ and } \beta \in (M \mid T)$
 - where $\alpha \in (N \cup T)^* N (N \cup T)^*$ and $\beta \in (N \cup T)^*$
 - $-S \in N$ is a designated *start symbol*

- Terminals

 a,b,c,... ∈ *T* specific terminals: 0, 1, id, +
- Nonterminals *A,B,C,...* ∈ *N* specific nonterminals: *expr*, *term*, *stmt*
- Grammar symbols $X, Y, Z \in (N \cup T)$
- Strings of terminals $u, v, w, x, y, z \in T^*$
- Strings of grammar symbols $\alpha, \beta, \gamma \in (N \cup T)^*$

Derivations (Recap)

- The *one-step derivation* is defined by $\alpha A \beta \Rightarrow \alpha \gamma \beta$ where $A \rightarrow \gamma$ is a production in the grammar
- In addition, we define
 - \Rightarrow is *leftmost* \Rightarrow_{lm} if α does not contain a nonterminal
 - \Rightarrow is *rightmost* \Rightarrow_{rm} if β does not contain a nonterminal
 - Transitive closure \Rightarrow^* (zero or more steps)
 - Positive closure \Rightarrow^+ (one or more steps)
- The *language generated by G* is defined by $L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$

Derivation (Example)

Grammar $G = (\{E\}, \{+, *, (,), -, \operatorname{id}\}, P, E)$ with productions $P = E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid \operatorname{id}$

Example derivations: $E \Rightarrow -E \Rightarrow - \mathbf{id}$ $E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + \mathbf{id} \Rightarrow_{rm} \mathbf{id} + \mathbf{id}$ $E \Rightarrow^{*} E$ $E \Rightarrow^{*} \mathbf{id} + \mathbf{id}$ $E \Rightarrow^{+} \mathbf{id} + \mathbf{id}$

Language Classification

- A grammar G is said to be
 - *Regular* if it is *right linear* where each production is of the form

 $A \rightarrow w B \quad \text{or} \quad A \rightarrow w$ or *left linear* where each production is of the form $A \rightarrow B w \quad \text{or} \quad A \rightarrow w$ - *Context free* if each production is of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$ - *Context sensitive* if each production is of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$ where $A \in N, \alpha, \gamma, \beta \in (N \cup T)^*, |\gamma| > 0$

– Unrestricted

	Chomsky Hierarchy
	$L(regular) \subset L(context free) \subset L(context sensitive) \subset L(unrestricted)$
	Where $L(T) = \{ L(G) \mid G \text{ is of type } T \}$ That is: the set of all languages generated by grammars <i>G</i> of type <i>T</i>
Examples:	Every <i>finite language</i> is regular! (construct a FSA for strings in $L(G)$) $L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mid n \ge 1 \}$ is context free, but not regular $L_2 = \{ \mathbf{wcw} \mid \mathbf{w} \text{ is in } L(\mathbf{a} \mathbf{b})^* \}$ is context sensitive $L_2 = \{ \mathbf{a}^n \mathbf{b}^m \mathbf{c}^n \mathbf{d}^m \mid n \ge 1 \}$ is context sensitive
	$L_3 = \{a b c u \mid n \ge 1\}$ is context sensitive

3. Lexical Versus Syntactic Analysis

- Why use regular expressions to define the lexical syntax of a language?
 - Quite simple, more concise and easier-to-understand
 - More efficient lexical analyzers can be constructed automatically from regular expressions
 - Regular expressions are most useful for describing the structure of constructs such as identifiers, constants, keywords, and white space.
 - Grammars are most useful for describing nested structures such as balanced parentheses, matching begin-end's, corresponding if-then-else's, and so on.

Left Recursion

- A grammar is **left recursive** if it has a nonterminal *A* such that there is a derivation $A \stackrel{+}{\Rightarrow} A \alpha$ for some string α .
- When a grammar is left recursive then a predictive parser loops forever on certain inputs.
- Immediate left recursion, where there is a production of the form $A \rightarrow A \alpha$.

$$\begin{array}{ccc} A \to A \alpha & & A \to \beta R \\ & | \beta & & & | \gamma R \\ & | \gamma & & & R \to \alpha R \\ & & & | \varepsilon \end{array}$$

Algorithm to eliminate left recursion

```
Input: Grammar G with no cycles or \varepsilon-productions
Arrange the nonterminals in some order A_1, A_2, ..., A_n
for i = 1, ..., n {
           for j = 1, ..., i-1 {
                      replace each
                                 A_i \rightarrow A_i \gamma
                      with
                                 A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \dots \mid \delta_k \gamma
                      where
                                 A_i \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_k
           }
           eliminate the immediate left recursion in A_i
}
```


$$Example Left Recursion Elim.$$

$$A \rightarrow BC | \mathbf{a}$$

$$B \rightarrow CA | A \mathbf{b}$$

$$C \rightarrow AB | CC | \mathbf{a}$$

$$i = 1: \quad \text{nothing to do}$$

$$i = 2, j = 1: \quad B \rightarrow CA | \underline{A} \mathbf{b}$$

$$\Rightarrow \quad B \rightarrow CA | \underline{B} \underline{C} \mathbf{b} | \mathbf{a} \mathbf{b}$$

$$\Rightarrow \quad B \rightarrow CA | \underline{B} \underline{C} \mathbf{b} | \mathbf{a} \mathbf{b}$$

$$\Rightarrow \quad B \rightarrow CA B_R | \mathbf{a} \mathbf{b} B_R$$

$$B_R \rightarrow C \mathbf{b} B_R | \varepsilon$$

$$i = 3, j = 1: \quad C \rightarrow \underline{A} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

$$\Rightarrow \quad C \rightarrow \underline{B} C B | \mathbf{a} B | CC | \mathbf{a}$$

Left Factoring

- When a nonterminal has two or more productions whose right-hand sides start with the same grammar symbols, the grammar is not LL(1) and cannot be used for predictive parsing
- Replace productions

 $A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma$

with

$$A \to \alpha A_R \mid \gamma$$
$$A_R \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

• Example:

$$S \rightarrow i E t S \mid i E t S e S \mid a \implies S \rightarrow i E t S S' \mid a$$

 $S' \rightarrow e S \mid \epsilon$

4. Top-Down Parsing

- Constructing a parse tree for the input string, starting from the root and creating the nodes of the parse tree in preorder
- Equivalently, finding the leftmost derivation for the input string

Parsing Methods

- *Universal* (any C-F grammar)
 - Cocke-Younger-Kasimi
 - Earley
- *Top-down* (C-F grammar with restrictions)
 - Recursive descent (predictive parsing)
 - LL (Left-to-right, Leftmost derivation) methods
- *Bottom-up* (C-F grammar with restrictions)
 - Operator precedence parsing
 - LR (Left-to-right, Rightmost derivation) methods
 - SLR, canonical LR, LALR

Predictive Parsing

- Eliminate left recursion from grammar
- Left factor the grammar
- Compute FIRST and FOLLOW
- Two variants:
 - Recursive (recursive-descent parsing)
 - Non-recursive (table-driven parsing)
- LL(k) class of grammars
 - It can be used to construct predictive parsers looking k symbols ahead in the input.

FIRST

 FIRST(α) = { terminals that begin strings derived from α }

```
FIRST(a) = {a} if a \in T

FIRST(\varepsilon) = {\varepsilon}

FIRST(A) = \bigcup_{A \to \alpha} FIRST(\alpha) for A \to \alpha \in P

FIRST(X_1X_2...X_k) =

if for all j = 1, ..., i-1 : \varepsilon \in \text{FIRST}(X_j) then

add non-\varepsilon in FIRST(X_i) to FIRST(X_1X_2...X_k)

if for all j = 1, ..., k : \varepsilon \in \text{FIRST}(X_j) then

add \varepsilon to FIRST(X_1X_2...X_k)
```

FOLLOW

• FOLLOW(A) = { the set of terminals that can immediately follow nonterminal A }

```
FOLLOW(A) =

for all (B \rightarrow \alpha A \beta) \in P do

add FIRST(\beta)\{\epsilon} to FOLLOW(A)

for all (B \rightarrow \alpha A \beta) \in P and \epsilon \in FIRST(\beta) do

add FOLLOW(B) to FOLLOW(A)

for all (B \rightarrow \alpha A) \in P do

add FOLLOW(B) to FOLLOW(A)

if A is the start symbol S then

add $ to FOLLOW(A)
```

```
E \rightarrow T E'
     Example
                           F \rightarrow (E) \mid \mathbf{id}
FIRST(F) = FIRST(T) = FIRST(E) = \{ (, id \}
FIRST(E') = \{+, \epsilon\}
FIRST(T') = \{*, \varepsilon\}
FOLLOW(E) = FOLLOW(E') = \{\}, \}
FOLLOW(T) = FOLLOW(T') = \{+, \}
FOLLOW(F) = \{+, *, \},
```

LL(1) Grammar

- Predictive parsers, that is, recursive-descent parsers needing no backtracking, can be constructed for a class of grammars called LL(1)
- A grammar *G* is LL(1) if it is not left recursive and for each collection of productions

 $A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n$ for nonterminal *A* the following holds:

1. FIRST(
$$\alpha_i$$
) \cap FIRST(α_j) = \emptyset for all $i \neq j$

2. if
$$\alpha_i \Rightarrow^* \varepsilon$$
 then

- 2.a. $\alpha_j \not\Rightarrow^* \varepsilon$ for all $j \neq i$
- 2.b. $FIRST(\alpha_j) \cap FOLLOW(A) = \emptyset$ for all $j \neq i$

Non-LL(1) Examples

Grammar	Not LL(1) because:
$S \rightarrow S \mathbf{a} \mid \mathbf{a}$	Left recursive
$S \rightarrow \mathbf{a} S \mid \mathbf{a}$	$FIRST(\mathbf{a} S) \cap FIRST(\mathbf{a}) \neq \emptyset$
$S \rightarrow \mathbf{a} \ R \mid \varepsilon$	For <i>R</i> :
$R \rightarrow S \mid \varepsilon$	$S \Rightarrow^* \varepsilon$ and $\varepsilon \Rightarrow^* \varepsilon$
$S \rightarrow \mathbf{a} R \mathbf{a}$	For <i>R</i> :
$R \to S \mid \varepsilon$	$\mathrm{FIRST}(S) \cap \mathrm{FOLLOW}(R) \neq \emptyset$
$S \rightarrow \mathbf{i} E \mathbf{t} S S' \mid \mathbf{a}$	
$S' \rightarrow \mathbf{e} \ S \mid \varepsilon$	For <i>S'</i> :
$E \rightarrow \mathbf{b}$	$ \text{FIRST}(\mathbf{e} S) \cap \text{FOLLOW}(S') \neq \emptyset$

Non-Recursive Predictive Parsing: Table-Driven Parsing

Given an LL(1) grammar G = (N, T, P, S) construct a table M[A,a] for A ∈ N, a ∈ T and use a *driver program* with a *stack*


```
Constructing an LL(1) Predictive
                  Parsing Table
         for each production A \rightarrow \alpha {
             for each a \in \text{FIRST}(\alpha) {
                  add A \rightarrow \alpha to M[A,a]
              }
             if \varepsilon \in \text{FIRST}(\alpha) {
                  for each b \in FOLLOW(A) {
                      add A \rightarrow \alpha to M[A,b]
              }
         Mark each undefined entry in M error
```

E	vomnla	Table		$A \rightarrow \alpha$		FIRST(α)	FOL	LOW(A)
	xampic	Iaur		$E \rightarrow T E$,	(id			\$)
	$E \rightarrow T E'$			$E' \rightarrow + TL$	Ĕ	+			ፍ)
	$E' \rightarrow T E$	$E' \epsilon$		$E' \rightarrow \varepsilon$		3			\$)
	$T \rightarrow F T'$			$T \rightarrow F T$,	(id		-	+\$)
	$T \rightarrow * F T$	΄ ε		$T' \rightarrow *F'$	T'	*			⊦\$)
	$F \rightarrow (E)$	id		$T' \rightarrow \varepsilon$		3			()
				$F \rightarrow (E)$)	(*	+\$)
			,	$F \rightarrow \mathbf{id}$		id		*	+\$)
	id	+		*		()	\$
E	$E \rightarrow T E'$				E	$\rightarrow TE'$			
E		$E' \rightarrow + TE'$					Ĕ	$\rightarrow \epsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow F T'$				T	$\rightarrow F T'$			
T'		$T' \rightarrow \varepsilon$	1	$\vec{F} \rightarrow FT$			Ť	$\rightarrow \epsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow \mathbf{id}$				F	$\rightarrow (E)$			

LL(1) Grammars are Unambiguous

Ambiguous grammar
$S \rightarrow \mathbf{i} E \mathbf{t} S S' \mid \mathbf{a}$
$S' \rightarrow \mathbf{e} S \mid \varepsilon$
$E \rightarrow \mathbf{b}$

$A \rightarrow \alpha$	$FIRST(\alpha)$	FOLLOW(A)
$S \rightarrow \mathbf{i} E \mathbf{t} S S'$	i	
$S \rightarrow \mathbf{a}$	a	еъ
$S' \rightarrow \mathbf{e} S$	e	e P
$S' \rightarrow \varepsilon$	3	еъ
$E \rightarrow \mathbf{b}$	b	t

Error: duplicate table entry

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$S' \rightarrow \varepsilon$	
$\begin{vmatrix} S' \\ S' \rightarrow \mathbf{e} \ S \end{vmatrix}$	$S' \rightarrow \varepsilon$
$E \qquad \qquad E \to \mathbf{b} \qquad \qquad$	

Predictive Parsing Program (Driver)

```
read w$ into the input buffer; // w is the input
push($); push(S);
a = lookahead; // set ip to point to the first symbol of w
X = pop();
while (X \neq \$) {
    if (X is a) a = lookahead; // advance ip;
    else if (X is a terminal) error();
    else if (M[X, a] is an error entry ) error();
    else if (M[X, a] = X \rightarrow Y_1 Y_2 \dots Y_k) {
        output the production X \rightarrow Y_1 Y_2 \dots Y_k;
        push(Y_k); push(Y_{k-l}), \dots, push(Y_1);
    }
    X = pop();
```

Example: Moves	of table-driven	parsing	on input
	id + id * id		

MATCHED	STACK	INPUT	ACTION
	E	id + id * id	
	TE'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $E \to TE'$
	FT'E'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id}$	output $T \to FT'$
	id $T'E'$ \$	$\mathbf{id} + \mathbf{id} \ast \mathbf{id} \$$	output $F \to \mathbf{id}$
\mathbf{id}	T'E'\$	+ id * id\$	match id
\mathbf{id}	E'\$	+ id * id\$	output $T' \to \epsilon$
\mathbf{id}	+ TE'\$	+ id * id\$	output $E' \to + TE'$
\mathbf{id} +	TE'\$	id * id	match +
\mathbf{id} +	FT'E'\$	id * id\$	output $T \to FT'$
\mathbf{id} +	$\operatorname{id} T'E'$ \$	$\mathbf{id} * \mathbf{id}$	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	* id\$	match id
$\mathbf{id} + \mathbf{id}$	* FT'E'\$	* id\$	output $T' \to * FT'$
$\mathbf{id} + \mathbf{id} *$	FT'E'\$	\mathbf{id}	match *
$\mathbf{id} + \mathbf{id} *$	id $T'E'$ \$	\mathbf{id}	output $F \to \mathbf{id}$
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	T'E'\$	\$	match id
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	E'\$	\$	output $T' \to \epsilon$
$\mathbf{id} + \mathbf{id} \ast \mathbf{id}$	\$	\$	output $E' \to \epsilon$

Panic Mode Recovery

Add synchronizing actions to undefined entries based on FOLLOW

Pro: Can be automatedCons: Error messages are needed

FOLLOW(*E*) = {) \$ } FOLLOW(*E*') = {) \$ } FOLLOW(*T*) = { +) \$ } FOLLOW(*T*') = { +) \$ } FOLLOW(*F*) = { + *) \$ }

38

	id	+	*	()	\$
Ε	$E \rightarrow T E'$			$E \rightarrow T E'$	synch	synch
E		$E' \rightarrow T E'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
Т	$T \rightarrow F T'$	synch		$T \rightarrow F T'$	synch	synch
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow * F T'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow id$	synch	synch	$F \rightarrow (E)$	synch	synch

synch: the driver pops current nonterminal *A* and skips input till synch token or skips input until one of FIRST(*A*) is found

Example: Moves of parsing and error recovery on the erroneous input) *id* * + *id*

STACK	INPUT	REMARK
E \$) $\mathbf{id} * + \mathbf{id} \$$	error, skip)
E \$	$\mathbf{id} * + \mathbf{id} \$$	\mathbf{id} is in FIRST (E)
TE' \$	$\mathbf{id}*+\mathbf{id}$	
FT'E' \$	$\mathbf{id}*+\mathbf{id}\$$	
id $T'E'$ \$	$\mathbf{id}*+\mathbf{id}\$$	
T'E' \$	$* + \mathbf{id}\$$	
FT'E'	$ + \mathbf{id}\$$	
FT'E' \$	$+ \operatorname{id} \$$	error, $M[F, +] = $ synch
T'E' \$	$+ \operatorname{id} \$$	F has been popped
E' \$	$+ \operatorname{id} \$$	
+ TE' \$	$+ \operatorname{id} \$$	
TE' \$	$\mathbf{id}\$$	
FT'E' \$	\mathbf{id}	
$\operatorname{id} T'E'$ \$	\mathbf{id}	
T'E' \$	\$	
E' \$	\$	
\$	\$	

