CS 4300: Compiler Theory

Chapter 3 Lexical Analysis

Xuejun Liang 2019 Fall

Outlines (Sections)

- 1. The Role of the Lexical Analyzer
- 2. Input Buffering (Omit)
- 3. Specification of Tokens
- 4. Recognition of Tokens
- 5. The Lexical -Analyzer Generator Lex
- 6. Finite Automata
- 7. From Regular Expressions to Automata
- 8. Design of a Lexical-Analyzer Generator
- 9. Optimization of DFA-Based Pattern Matchers

1. The Role of the Lexical Analyzer

• As the first phase of a compiler, the main task of the lexical analyzer is to read the input characters of the source program, group them into lexemes, and produce as output a sequence of tokens for each lexeme in the source program.

Why Lexical Analysis and Parsing (Syntax Analysis) are Separate

- Simplifies the design of the compiler
 - LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)
- Provides efficient implementation
 - Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 - Stream buffering methods to scan input
- Improves portability
 - Non-standard symbols and alternate character encodings can be normalized (e.g. UTF8, trigraphs)

Tokens, Patterns, and Lexemes

- A *token* is a pair consisting of a token name and an optional attribute value
 - The token name is an abstract symbol representing a kind of lexical unit
 - For example: **id** and **num**
- *Lexemes* are the specific character strings that make up a token
 - For example: **abc** and **123**
- *Patterns* are rules describing the set of lexemes belonging to a token
 - For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Examples of Tokens

TOKEN	INFORMAL DESCRIPTION	SAMPLE LEXEMES
if	characters i, f	if
else	characters e, l, s, e	else
comparison	< or > or <= or >= or == or !=	<=, !=
id	letter followed by letters and digits	pi, score, D2
number	any numeric constant	3.14159, 0, 6.02e23
literal	anything but ", surrounded by "'s	"core dumped"

Token Classes:

- 1. One token for each keyword
- 2. Tokens for the operators
- 3. One token representing all identifiers
- 4. One or more tokens representing constants
- 5. Tokens for each punctuation symbol

Attributes for Tokens

- When more than one lexeme can match a pattern, the lexical analyzer must provide the subsequent compiler phases additional information about the particular lexeme that matched
- Examples: lexemes, token names and associated attribute values for the following statements.

printf ("Total = %d\n", score);

E = M * C ** 2

3. Specification of Patterns for Tokens: *Definitions*

- An *alphabet* Σ is a finite set of symbols (characters)
- A *string s* is a finite sequence of symbols from Σ
 - -|s| denotes the length of string s
 - $-\varepsilon$ denotes the empty string, thus $|\varepsilon| = 0$
- A *language* is a specific set of strings over some fixed alphabet Σ

String Operations

- The *concatenation* of two strings *x* and *y* is denoted by *xy*
- The *exponentation* of a string *s* is defined by

$$s^{0} = \varepsilon$$

$$s^{i} = s^{i-1}s \quad \text{for } i > 0$$

note that $s\varepsilon = \varepsilon s = s$

Language Operations

- Union $L \cup M = \{s \mid s \in L \text{ or } s \in M\}$
- Concatenation $LM = \{xy \mid x \in L \text{ and } y \in M\}$
- Exponentiation $L^0 = \{\varepsilon\}; L^i = L^{i-1}L$
- Kleene closure $L^* = \bigcup_{i=0,...,\infty} L^i$
- Positive closure $L^+ = \bigcup_{i=1,...,\infty} L^i$

where $L = \{A, B, ..., Z, a, b, ..., z\}$ and $D = \{0, 1, ..., 9\}$

Example: Compute $L \cup D$ LD D^4 D^* $L(L \cup D)^*$ D^+

Regular Expressions Over Some Alphabet Σ

- Basis symbols:
 - $-\epsilon$ is a regular expression denoting language $\{\epsilon\}$
 - $-a \in \Sigma$ is a regular expression denoting $\{a\}$
- If *r* and *s* are regular expressions denoting languages *L*(*r*) and *L*(*s*) respectively, then
 - -r | s is a regular expression denoting $L(r) \cup L(s)$
 - rs is a regular expression denoting L(r) L(s)
 - $-r^*$ is a regular expression denoting $(L(r))^*$
 - -(r) is a regular expression denoting L(r)
- A language defined by a regular expression is called a *regular set*

Algebraic laws for regular expressions

LAW	DESCRIPTION		
r s = s r	is commutative		
r (s t) = (r s) t	is associative		
r(st) = (rs)t	Concatenation is associative		
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over		
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation		
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure		
$r^{**} = r^{*}$	* is idempotent		

Example 3.4 : Let $\Sigma = \{a, b\}$, what are languages denoted by The following regular expressions:

a|b, (a|b)(a|b), a*, (a|b)*, a|a*b

Regular Definitions Over Some Alphabet Σ

• Regular definitions introduce a naming convention with name to regular expression bindings:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

...

$$d_n \rightarrow r_n$$

where:

- Each d_i is a new symbol, not in Σ and not the same as any other of the d's, and
- each r_i is a regular expression over

 $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

Regular Definitions: Examples

Numbers: 5280, 0.01234, 6.336E4, or 1.89E-4.

Regular Definitions: Extensions

• The following shorthands are often used:

One or more instances: + Zero or one instance: ? Character classes:

$$r^{+} = rr^{*}$$

$$r? = r | \varepsilon$$

$$[\mathbf{a} - \mathbf{z}] = \mathbf{a} | \mathbf{b} | \mathbf{c} | \dots | \mathbf{z}$$

• Examples:

$$\begin{array}{rccc} letter_{-} & \rightarrow & [\texttt{A-Za-z_-}] \\ digit & \rightarrow & [\texttt{0-9}] \\ id & \rightarrow & letter_{-} (\ letter \mid \ digit \)^* \end{array}$$

$$\begin{array}{rcl} digit & \rightarrow & [0-9] \\ digits & \rightarrow & digit^+ \\ number & \rightarrow & digits \ (. \ digits)? \ (\ E \ [+-]? \ digits \)? \end{array}$$

4. Recognition of Tokens

Example 3.8: A Grammar for branching statements

The terminals of the grammar, which are **if**, **then**, **else**, **relop**, **id**, and **number**, are the names of tokens for lexical analyzer.

Patterns for tokens of Example 3.8

 $\begin{array}{rcl} digit & \rightarrow & [0-9] \\ digits & \rightarrow & digit^+ \\ number & \rightarrow & digits (. \ digits)? \ (\ E \ [+-]? \ digits)? \\ letter & \rightarrow & [A-Za-z] \\ id & \rightarrow & letter \ (\ letter \ | \ digit \)^* \\ if & \rightarrow & letter \ (\ letter \ | \ digit \)^* \\ if & \rightarrow & letter \\ else & \rightarrow & else \\ relop & \rightarrow & < | \ > | \ <= | \ >= | \ = | \ <> \end{array}$

Tokens, patterns, and attribute values

LEXEMES	TOKEN NAME	ATTRIBUTE VALUE	
Any ws	-	_	
if	if	222	
then	\mathbf{then}		
else	else	-	
Any id	id	Pointer to table entry	
Any number	number	Pointer to table entry	
<	relop	LT	
<=	relop	LE	
=	relop	EQ	
<>	relop	NE	
>	relop	GŤ	
>=	relop	GE	

Transition Diagrams (Cont.)

Sketch of implementation of relop transition diagram

```
TOKEN getRelop()
{
    TOKEN retToken = new(RELOP);
    while(1) { /* repeat character processing until a return
                  or failure occurs */
        switch(state) {
            case 0: c = nextChar();
                    if ( c == '<' ) state = 1;
                    else if ( c == '=' ) state = 5;
                    else if ( c == '>' ) state = 6;
                     else fail(); /* lexeme is not a relop */
                    break;
            case 1: ...
            case 8: retract();
                    retToken.attribute = GT;
                    return(retToken);
        }
    }
7
```

5. Lexical-Analyzer Generator: Lex and Flex

- *Lex* and its newer cousin *flex* are *scanner generators*
- Scanner generators systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Structure of Lex Programs

- A Lex program consists of three parts:
 - declarations

ୖ୫୫

translation rules

응응

user-defined auxiliary procedures

- declarations
 - C declarations in % { % }
 - regular definitions
- The translation rules are of the form:

pattern ₁ pattern ₂	$\{ action_1 \} \\ \{ action_2 \}$
 pattern _n	$\{ action_n \}$

Regular Expressions in Lex

x	match the character \mathbf{x}		
\backslash .	match the character.		
"string"	match contents of string of characters		
•	match any character except newline		
^	match beginning of a line		
\$	match the end of a line		
[xyz]	match one character \mathbf{x} , \mathbf{y} , or \mathbf{z} (use \setminus to escape –)		
[^xyz] match any character except x, y, and z			
[a-z]	match one of a to z		
r*	closure (match zero or more occurrences)		
r +	positive closure (match one or more occurrences)		
r?	optional (match zero or one occurrence)		
$r_{1}r_{2}$	match r_1 then r_2 (concatenation)		
$r_1 r_2$	match r_1 or r_2 (union)		
(r)	grouping		
$r_1 \backslash r_2$	match r_1 when followed by r_2		
{ <i>d</i> }	match the regular expression defined by d		

Example Lex Specification 1

Example Lex Specification 2

Example Lex Specification 3

Lex Specification: Example 3.8

```
%{ /* definitions of manifest constants */
#define LT (256)
...
8}
          [ \t n]
delim
          {delim}+
ws
                                                             Return
          [A-Za-z]
letter
digit
          [0-9]
                                                             token to
id
          {letter}({letter}|{digit})*
          {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
number
                                                              parser
응응
{ws}
          { }
                                                   Token
if
          {return IF;}
                                                  attribute
then
          {return THEN;}
          {return ELSE:
else
          {yylval = install id(); return ID;}
{id}
          \{yy|val = install num() return NUMBER; \}
{number}
"<"
          {yylval = LT; return RELOR; }
"<="
          {yylval = LE; return RELOP;
"="
          {yylval = EQ; return RELOP;}
"<>"
          {yylval = NE; return RELOP;}
">"
          {yylval = GT; return RELOP;}
">="
                                               Install yytext as
          {yylval = GE; return RELOP;}
응응
                                           identifier in symbol table
int install id()
```

Conflict Resolution in Lex

- Two rules that Lex uses to decide on the proper lexeme to select, when several prefixes of the input match one or more patterns:
 - 1. Always prefer a longer prefix to a shorter prefix.
 - 2. If the longest possible prefix matches two or more patterns, prefer the pattern listed first in the Lex program.

6. Finite Automata

- Design of a Lexical Analyzer Generator
 - Translate regular expressions to NFA
 - Translate NFA to an efficient DFA

Nondeterministic Finite Automata

• An NFA is a 5-tuple $(S, \Sigma, \delta, s_0, F)$ where

S is a finite set of *states* Σ is a finite set of symbols, the *alphabet* δ is a *mapping* from $S \times \Sigma$ to a set of states $s_0 \in S$ is the *start state* $F \subseteq S$ is the set of *accepting* (or *final*) *states*

Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a *transition graph*
- Example
 - an NFA recognizing the language of regular expression
 (alb) * abb

Transition Table

• The mapping δ of an NFA can be represented in a *transition table*

$\delta(0,a) = \{0,1\}$	State	Input a	Input b
$\delta(0,\mathbf{b}) = \{0\}$	0	{0, 1}	{0}
$\delta(1,\mathbf{b}) = \{2\}$	1		{2}
$\delta(2, \mathbf{b}) = \{3\}$	2		{3}

The Language Defined by an NFA

- An NFA *accepts* an input string *x* if and only if there is some path with edges labeled with symbols from *x* in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The *language defined by* an NFA is the set of input strings it accepts, such as (**a** | **b**)***abb** for the example NFA

Deterministic Finite Automata

- A deterministic finite automaton (DFA) is a special case of NFA
 - No state has an ε -transition
 - For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
 - At most one path exists to accept a string
 - Simulation algorithm is simple

Simulating a DFA

```
s = s<sub>0</sub>;
c = nextChar();
while ( c != eof ) {
    s = move(s, c);
    c = nextChar();
}
if ( s is in F ) return "yes";
else return "no";
```


7. From Regular Expressions to Automata Conversion of an NFA into a DFA

• The *subset construction* algorithm converts an NFA into a DFA using:

$$-\varepsilon\text{-closure}(s) = \{s\} \cup \{t \mid s \to_{\varepsilon} \ldots \to_{\varepsilon} t\}$$

$$-\varepsilon\text{-}closure(T) = \bigcup_{s \in T} \varepsilon\text{-}closure(s)$$

$$-move(T, a) = \{ s \mid t \rightarrow_a s \text{ and } t \in T \}$$

- The algorithm produces:
 - *Dstates* -- the set of states of the new DFA consisting of sets of states of the NFA
 - Dtran -- the transition table of the new DFA

The Subset Construction Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {
    mark T
    for (each input symbol a \in \Sigma) {
        U = \varepsilon-closure(move(T,a))
        if (U is not in Dstates)
            add U as an unmarked state to Dstates
        Dtran[T,a] := U
    }
}
```

Computing ε -closure(*T*)

```
push all states of T onto stack;

initialize \varepsilon-closure(T) to T;

while (stack is not empty) {

    pop t, the top element, off stack;

    for (each state u with an edge from t to u labeled \varepsilon)

        if (u is not in \varepsilon-closure(T)) {

            add u to \varepsilon-closure(T);

            push u onto stack;

        }

    }
```

Subset Construction Example 1

Subset Construction Example 2

ε-*closure* and *move* Examples

 ε -closure({0}) = {0,1,3,7} move({0,1,3,7},**a**) = {2,4,7} ε -closure({2,4,7}) = {2,4,7} move({2,4,7},**a**) = {7} ε -closure({7}) = {7} move({7},**b**) = {8} ε -closure({8}) = {8} move({8},**a**) = Ø

Simulating an NFA Using ε-*closure* and *move*

 $S = \epsilon \text{-}closure(s_0);$ c = nextChar();while ($c \models eof$) { $S = \epsilon \text{-}closure(move(S, c));$ c = nextChar();} if ($S \cap F \models \emptyset$) return "yes"; else return "no";

From Regular Expression to NFA (Thompson's Construction)

Construct an NFA for r = (a|b)*abb

8. Design of a Lexical-Analyzer Generator Construct an NFA from a Lex Program

Lex specification with regular expressions

 $\{ action_1 \}$ p_1 $action_1$ N(p) $\{action_2\}$ p_2 start $action_2$. . . 3 $\{action_n\}$ p_n $N(p_n)$ action_n Subset construction DFA

NFA

Combining the NFAs of a Set of Regular Expressions

start

Simulating the Combined NFA Example 1

3

Must find the *longest match*: Continue until no further moves are possible When last state is accepting: execute action

9. From RE to DFA Directly

- The "*important states*" of an NFA are those without an ε-transition, that is if *move*({s},a) ≠ Ø for some a then s is an important state
- The subset construction algorithm uses only the important states when it determines
 ε-closure(move(T,a))

NFA Constructed for (**a**|**b**)***abb#**

Note:

The NFA is constructed by Thompson's Algorithm
 The important states in the NFA are numbered

Algorithm: INPUT : A regular expression r. OUTPUT: A DFA D that recognizes L(r).

- Augment the regular expression *r* with a special end symbol # to make accepting states important: the new expression is *r*#
- Construct a syntax tree T from *r*#
- Traverse the tree to construct functions *nullable*, *firstpos*, *lastpos*, and *followpos*
- Construct *Dstates*, the set of states of DFA D, and *Dtran*, the transition function for D.
- The start state of D is *firstpos*(n_0), where node n_0 is the root of T. The accepting states are those containing the position for the end marker symbol #.

Syntax Tree of (**a**|**b**)***abb#**

Annotating the Syntax Tree

- *nullable*(*n*): is true for a syntax-tree node *n* if and only if the subexpression represented by *n* has ε in its language.
- *firstpos*(*n*): set of positions that can match the first symbol of a string generated by the subexpression represented by node *n*
- *lastpos*(*n*): the set of positions that can match the last symbol of a string generated be the subexpression represented by node *n*
- *followpos*(*p*): the set of positions that can follow position *p* in the syntax-tree

Annotating the Syntax Tree (Cond.)

Node <i>n</i>	nullable(n)	firstpos(n)	lastpos(n)
Leaf ɛ	true	Ø	Ø
Leaf <i>i</i>	false	<i>{i}</i>	$\{i\}$
$\begin{matrix} I \\ / \land \\ c_1 & c_2 \end{matrix}$	$nullable(c_1)$ or $nullable(c_2)$	$firstpos(c_1)$ \cup $firstpos(c_2)$	$lastpos(c_1)$ \cup $lastpos(c_2)$
$c_1 c_2$	$nullable(c_1)$ and $nullable(c_2)$	if $nullable(c_1)$ then $firstpos(c_1) \cup$ $firstpos(c_2)$ else $firstpos(c_1)$	if $nullable(c_2)$ then $lastpos(c_1) \cup$ $lastpos(c_2)$ else $lastpos(c_2)$
* c ₁	true	$firstpos(c_1)$	$lastpos(c_1)$

Annotated Syntax Tree of (**a**|**b**)***abb#**

Algorithm: followpos

```
for each node n in the tree {
    if n is a cat-node with left child c_1 and right child c_2
    for each i in lastpos(c_1) {
        followpos(i) := followpos(i) \cup firstpos(c_2)
    }
    else if n is a star-node
    for each i in lastpos(n) {
        followpos(i) := followpos(i) \cup firstpos(n)
    }
}
```

Algorithm: Construct *Dstates*, and *Dtran*

 $s_0 = firstpos(n_0)$ where n_0 is the root of the syntax tree $Dstates := \{s_0\}$ and s_0 is unmarked while (there is an unmarked state S in Dstates) { mark S;

for each input symbol $a \in \Sigma$ { let U be the union of *followpos*(p) for all p in S that correspond to a; if (U not in Dstates) add U as an unmarked state to Dstates Dtran[S,a] = U

From RE to DFA Directly: Example

Minimize the Number of States of a DFA

