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1. The Role of the Lexical Analyzer
• As the first phase of a compiler, the main task of the 

lexical analyzer is to read the input characters of the 
source program, group them into lexemes, and 
produce as output a sequence of tokens for each 
lexeme in the source program.
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Why Lexical Analysis and Parsing 
(Syntax Analysis) are Separate

• Simplifies the design of the compiler
– LL(1) or LR(1) parsing with 1 token lookahead would 

not be possible (multiple characters/tokens to match)

• Provides efficient implementation
– Systematic techniques to implement lexical analyzers 

by hand or automatically from specifications
– Stream buffering methods to scan input

• Improves portability
– Non-standard symbols and alternate character 

encodings can be normalized (e.g. UTF8, trigraphs)
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Tokens, Patterns, and Lexemes

• A token is a pair consisting of a token name and an 
optional attribute value
– The token name is an abstract symbol representing a kind of 

lexical unit

– For example: id and num 

• Lexemes are the specific character strings that make up a 
token
– For example: abc and 123

• Patterns are rules describing the set of lexemes belonging 
to a token
– For example: “letter followed by letters and digits” and 

“non-empty sequence of digits”



Examples of Tokens
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Token Classes:
1. One token for each keyword
2. Tokens for the operators
3. One token representing all identifiers
4. One or more tokens representing constants 
5. Tokens for each punctuation symbol



Attributes for Tokens

• When more than one lexeme can match a pattern, the 
lexical analyzer must provide the subsequent compiler 
phases additional information about the particular lexeme 
that matched

• Examples: lexemes, token names and associated attribute 
values for the following statements.
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printf ( "Total = %d\n",  score ) ;

E = M * C ** 2
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3. Specification of Patterns for 
Tokens: Definitions

• An alphabet  is a finite set of symbols 
(characters)

• A string s is a finite sequence of symbols 
from 
– s denotes the length of string s
–  denotes the empty string, thus  = 0

• A language is a specific set of strings over 
some fixed alphabet 
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String Operations

• The concatenation of two strings x and y is 
denoted by xy

• The exponentation of a string s is defined 
by

s0 = 
si = si-1s for i > 0

note that s = s = s
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Language Operations

• Union
L  M = {s  s  L or s  M}

• Concatenation
LM = {xy  x  L and y  M}

• Exponentiation
L0 = {};   Li = Li-1L

• Kleene closure
L* = i=0,…, Li

• Positive closure
L+ = i=1,…, Li

Example:
Compute
LD
LD
D4

D*
L(LD)*
D+

where 
L = {A, B, ..., Z,  a, b, ... , z} 
and D = {0, 1, . . . 9}
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Regular Expressions Over
Some Alphabet 

• Basis symbols:
–  is a regular expression denoting language {}
– a   is a regular expression denoting {a}

• If r and s are regular expressions denoting 
languages L(r) and L(s) respectively, then
– rs is a regular expression denoting L(r)  L(s)
– rs is a regular expression denoting L(r) L(s)
– r* is a regular expression denoting (L(r))*

– (r) is a regular expression denoting L(r)

• A language defined by a regular expression is 
called a regular set



Algebraic laws for regular expressions
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Example 3.4 : Let  = {a, b}, what are languages denoted by 
The following regular expressions:

a|b,  (a|b)(a|b),  a*, (a|b)*,  a|a*b
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Regular Definitions Over
Some Alphabet 

• Regular definitions introduce a naming convention 
with name to regular expression bindings: 

d1  r1

d2  r2

…
dn  rn

where:
– Each di is a new symbol, not in  and not the same as 

any other of the d's, and

– each ri is a regular expression over
  {d1, d2, …, di-1 }
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Regular Definitions: Examples

Numbers: 5280,  0.01234,  6.336E4,  or 1.89E-4.
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Regular Definitions: Extensions

• The following shorthands are often used:

• Examples:

One or more instances: +  r+ = rr*

Zero or one instance: ? r? = r
Character classes: [a-z] = abc…z
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4. Recognition of Tokens

Example 3.8: A Grammar for branching statements

The terminals of the grammar, which are if, then, else, relop , 
id, and number, are the names of tokens for lexical analyzer.
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Patterns for tokens of Example 3.8



Tokens, patterns, and attribute values
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whitespace
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Transition Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9start letter 10 11*other

letter or digit

return(getToken(),
installID())

relop  <<=<>>>==

id  letter ( letterdigit )*
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Transition Diagrams (Cont.)

Whitespace

Unsigned number



21Sketch of implementation of relop 
transition diagram
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5. Lexical-Analyzer Generator: 
Lex and Flex

• Lex and its newer cousin flex are scanner 
generators

• Scanner generators systematically translate 
regular definitions into C source code for 
efficient scanning

• Generated code is easy to integrate in C 
applications
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Creating a Lexical Analyzer with 
Lex and Flex

lex (or flex)

Lex source
program
lex.l

lex.yy.c

input
stream

C
compiler

a.out
sequence
of tokens

lex.yy.c

a.out
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Structure of Lex Programs

• A Lex program consists of three parts:
declarations 
%%
translation rules
%%
user-defined auxiliary procedures

• declarations 
– C declarations in %{ %}
– regular definitions

• The translation rules are of the form:
pattern1 { action1 }
pattern2 { action2 }
…
patternn { actionn }
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Regular Expressions in Lex
x match the character x
\. match the character .
“string” match contents of string of characters
. match any character except newline
^ match beginning of a line
$ match the end of a line
[xyz] match one character x, y, or z (use \ to escape -) 
[^xyz]match any character except x, y, and z
[a-z] match one of a to z
r* closure (match zero or more occurrences)
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)
r1r2 match r1 then r2 (concatenation)
r1|r2 match r1 or r2 (union)
( r ) grouping
r1\r2 match r1 when followed by r2

{d} match the regular expression defined by d
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Example Lex Specification 1

%{
#include <stdio.h>
%}
%%
[0-9]+  { printf(“%s\n”, yytext); }
.|\n    { }
%%
main()
{ yylex();
}

Contains
the matching

lexeme

Invokes
the lexical
analyzer

lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l

Translation
rules
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Example Lex Specification 2

%{
#include <stdio.h>
int ch = 0, wd = 0, nl = 0;
%}
delim     [ \t]+
%%
\n        { ch++; wd++; nl++; }
^{delim}  { ch+=yyleng; }
{delim}   { ch+=yyleng; wd++; }
.         { ch++; }
%%
main()
{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);
}

Regular
definitionTranslation

rules
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Example Lex Specification 3

%{
#include <stdio.h>
%}
digit     [0-9]
letter    [A-Za-z]
id        {letter}({letter}|{digit})*
%%
{digit}+  { printf(“number: %s\n”, yytext); }
{id}      { printf(“ident: %s\n”, yytext); }
.         { printf(“other: %s\n”, yytext); }
%%
main()
{ yylex(); 
}

Regular
definitionsTranslation

rules
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Lex Specification: Example 3.8
%{ /* definitions of manifest constants */
#define LT (256)
…
%}
delim     [ \t\n]
ws        {delim}+
letter    [A-Za-z]
digit     [0-9]
id        {letter}({letter}|{digit})*
number    {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
%%
{ws}      { }
if        {return IF;}
then      {return THEN;}
else      {return ELSE;}
{id}      {yylval = install_id(); return ID;}
{number}  {yylval = install_num(); return NUMBER;}
“<“ {yylval = LT; return RELOP;}
“<=“ {yylval = LE; return RELOP;}
“=“ {yylval = EQ; return RELOP;}
“<>“ {yylval = NE; return RELOP;}
“>“ {yylval = GT; return RELOP;}
“>=“ {yylval = GE; return RELOP;}
%%
int install_id()
…

Return
token to
parser

Token
attribute

Install yytext as
identifier in symbol table



Conflict Resolution in Lex

• Two rules that Lex uses to decide on the proper 
lexeme to select, when several prefixes of the 
input match one or more patterns:
1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more 
patterns, prefer the pattern listed first in the Lex 
program.
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6. Finite Automata

• Design of a Lexical Analyzer Generator
– Translate regular expressions to NFA

– Translate NFA to an efficient DFA

regular
expressions

NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

Optional
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Nondeterministic Finite Automata

• An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states
 is a finite set of symbols, the alphabet
 is a mapping from S   to a set of states
s0  S is the start state
F  S is the set of accepting (or final) states
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Transition Graph

• An NFA can be diagrammatically represented by a 
labeled directed graph called a transition graph

• Example
– an NFA recognizing the language of regular expression 

(alb) * abb

0start a
1 32

b b

a

b

S = {0,1,2,3},  = {a,b}, s0 = 0, F = {3}
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Transition Table

• The mapping  of an NFA can be 
represented in a transition table

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}
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The Language Defined by an NFA

• An NFA accepts an input string x if and only if 
there is some path with edges labeled with 
symbols from x in sequence from the start state to 
some accepting state in the transition graph

• A state transition from one state to another on the 
path is called a move

• The language defined by an NFA is the set of 
input strings it accepts, such as (ab)*abb for the 
example NFA
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Deterministic Finite Automata

• A deterministic finite automaton (DFA) is a 
special case of NFA
– No state has an -transition

– For each state s and input symbol a there is at most one 
edge labeled a leaving s

• Each entry in the transition table is a single state
– At most one path exists to accept a string

– Simulation algorithm is simple



Simulating a DFA
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0start a
1 32

b b

b
b

a

a

a

Example: A DFA that accepts (ab)*abb
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7. From Regular Expressions to Automata

Conversion of an NFA into a DFA

• The subset construction algorithm converts an 
NFA into a DFA using:
– -closure(s) = {s}  { ts  …  t}

– -closure(T) = sT -closure(s)

– move(T, a) = { st a s and t  T}

• The algorithm produces:
– Dstates -- the set of states of the new DFA   

consisting of sets of states of the NFA

– Dtran -- the transition table of the new DFA
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The Subset Construction Algorithm

Initially, -closure(s0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {

mark T
for (each input symbol a  ) {

U = -closure(move(T,a))
if (U is not in Dstates)

add U as an unmarked state to Dstates
Dtran[T,a] := U

}
}



Computing -closure(T)
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push all states of T onto stack;
initialize -closure(T) to T;
while ( stack is not empty ) {

pop t, the top element, off stack;
for ( each state u with an edge from t to u labeled  )

if ( u is not in -closure(T) ) {
add u to -closure(T) ;
push u onto stack;

}
}
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Subset Construction Example 1

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

NFA for (ab)*abb
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Subset Construction Example 2

Dstates
A = {0,1,3,7}
B = {2,4,7}
C = {8}
D = {7}
E = {5,8}
F = {6,8}

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






b

A
start

a

D

b

b a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3
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-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) = 

0

1

3

7

2

4

7

7 8
a ba a

none

Also used to simulate NFAs (!)
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Simulating an NFA Using
-closure and move
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N(r2)N(r1)

From Regular Expression to NFA 
(Thompson’s Construction)

fi 

f
a

i

fi
N(r1)

N(r2)

start

start

start 

 



fi
start

N(r) fi
start







a

r1r2

r1r2

r*  

BASIS

INDUCTION



Construct an NFA for r = (a|b)*abb
46

ar 1

213 rrr 

br 2

 34 rr 

Parse tree

 45 rr
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8. Design of a Lexical-Analyzer Generator 
Construct an NFA from a Lex Program

s0

N(p1)

N(p2)
start




N(pn)


…

p1 { action1 }
p2 { action2 }
…
pn { actionn }

action1

action2

actionn

Lex specification with
regular expressions

NFA

DFA

Subset construction
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Combining the NFAs of a Set of 
Regular Expressions

2
a

1
start

6
a

3
start

4 5
b b

8b7
start

a b

a { action1 }
abb { action2 }
a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start








49

Simulating the Combined NFA 
Example 1

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

7 8

Must find the longest match:
Continue until no further moves are possible
When last state is accepting: execute action

action1

action2

action3

a ba a
none
action3
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Simulating the Combined NFA 
Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the
first action given in the Lex specification is executed

action1

action2

action3

a bb a
none
action2

action3



DFA's for Lexical Analyzers
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2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






DFA

Subset 
construction

NFA

a ba a

a bb a

Examples
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9. From RE to DFA Directly

• The “important states” of an NFA are those 
without an -transition, that is if
move({s},a)   for some a then s is an 
important state

• The subset construction algorithm uses only 
the important states when it determines
-closure(move(T,a)) 



NFA Constructed for (a|b)*abb#
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Note: 
1. The NFA is constructed by Thompson’s Algorithm
2. The important states in the NFA are numbered
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Algorithm:

• Augment the regular expression r with a special end 
symbol # to make accepting states important: the new 
expression is r#

• Construct a syntax tree T from r#

• Traverse the tree to construct functions nullable, firstpos, 
lastpos, and followpos

• Construct Dstates, the set of states of DFA D, and Dtran, 
the transition function for D.

• The start state of D is firstpos(n0), where node n0 is the 
root of T. The accepting states are those containing the 
position for the end marker symbol #.

INPUT : A regular expression r.
OUTPUT: A DFA D that recognizes L(r) .
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Syntax Tree of (a|b)*abb#

*

|

1
a

2
b

3
a

4
b

5
b

#
6

concatenation

closure

alternation

position
number

(for leafs )
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Annotating the Syntax Tree

• nullable(n): is true for a syntax-tree node n if and only 
if the subexpression represented by n has  in its 
language.

• firstpos(n): set of positions that can match the first 
symbol of a string generated by the subexpression 
represented by node n

• lastpos(n): the set of positions that can match the last 
symbol of a string generated be the subexpression 
represented by node n

• followpos(p): the set of positions that can follow 
position p in the syntax-tree
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Annotating the Syntax Tree (Cond.)

Node n nullable(n) firstpos(n) lastpos(n)

Leaf  true  

Leaf i false {i} {i}

|
/ \

c1 c2

nullable(c1)
or

nullable(c2)

firstpos(c1)


firstpos(c2)

lastpos(c1)


lastpos(c2)

•
/ \

c1 c2

nullable(c1) 
and

nullable(c2)

if nullable(c1) then
firstpos(c1) 

firstpos(c2)
else firstpos(c1)

if nullable(c2) then
lastpos(c1) 

lastpos(c2)
else lastpos(c2)

*
|
c1

true firstpos(c1) lastpos(c1)
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Annotated Syntax Tree of (a|b)*abb#

{6}{1, 2, 3}

{5}{1, 2, 3}

{4}{1, 2, 3}

{3}{1, 2, 3}

{1, 2}{1, 2} *

{1, 2}{1, 2} |

{1}{1} a {2}{2} b

{3}{3} a

{4}{4} b

{5}{5} b

{6}{6} #

nullable

firstpos lastpos

1 2

3

4

5

6
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Algorithm: followpos

for each node n in the tree { 
if n is a cat-node with left child c1 and right child c2

for each i in lastpos(c1) {
followpos(i) := followpos(i)  firstpos(c2)

}
else if n is a star-node

for each i in lastpos(n) {
followpos(i) := followpos(i)  firstpos(n)

}
}
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Algorithm: Construct Dstates, and Dtran

s0 = firstpos(n0) where n0 is the root of the syntax tree
Dstates := {s0} and s0 is unmarked
while (there is an unmarked state S in Dstates) {

mark S;

for each input symbol a   {
let U be the union of followpos(p) for all p

in S that correspond to a;
if (U not in Dstates )

add U as an unmarked state to Dstates
Dtran[S,a] = U

}
}
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From RE to DFA Directly: Example

1,2,3start a 1,2,
3,4

1,2,
3,6

1,2,
3,5

b b

b b

a

a

a

Node followpos

1(a) {1, 2, 3}

2(b) {1, 2, 3}

3(a) {4}

4(b) {5}

5(b) {6}

6(#) -

1

2

3 4 5 6
b b

b

b

b

a

a

a
a

Dtran[{1,2,3}, a] 
= follows(1)  follows(3)
={1, 2, 3, 4}

Dtran[{1,2,3}, b] 
= follows(2)
={1, 2, 3, 4}
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Minimize the Number of States of a 
DFA

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

AC
start

B D E
b b

b

a
b

a

a a


