
CS 4300: Compiler Theory

Chapter 3
Lexical Analysis

Xuejun Liang

2019 Fall

Outlines (Sections)

1. The Role of the Lexical Analyzer

2. Input Buffering (Omit)

3. Specification of Tokens

4. Recognition of Tokens

5. The Lexical -Analyzer Generator Lex

6. Finite Automata

7. From Regular Expressions to Automata

8. Design of a Lexical-Analyzer Generator

9. Optimization of DFA-Based Pattern Matchers

2

1. The Role of the Lexical Analyzer
• As the first phase of a compiler, the main task of the

lexical analyzer is to read the input characters of the
source program, group them into lexemes, and
produce as output a sequence of tokens for each
lexeme in the source program.

3

4

Why Lexical Analysis and Parsing
(Syntax Analysis) are Separate

• Simplifies the design of the compiler
– LL(1) or LR(1) parsing with 1 token lookahead would

not be possible (multiple characters/tokens to match)

• Provides efficient implementation
– Systematic techniques to implement lexical analyzers

by hand or automatically from specifications
– Stream buffering methods to scan input

• Improves portability
– Non-standard symbols and alternate character

encodings can be normalized (e.g. UTF8, trigraphs)

5

Tokens, Patterns, and Lexemes

• A token is a pair consisting of a token name and an
optional attribute value
– The token name is an abstract symbol representing a kind of

lexical unit

– For example: id and num

• Lexemes are the specific character strings that make up a
token
– For example: abc and 123

• Patterns are rules describing the set of lexemes belonging
to a token
– For example: “letter followed by letters and digits” and

“non-empty sequence of digits”

Examples of Tokens
6

Token Classes:
1. One token for each keyword
2. Tokens for the operators
3. One token representing all identifiers
4. One or more tokens representing constants
5. Tokens for each punctuation symbol

Attributes for Tokens

• When more than one lexeme can match a pattern, the
lexical analyzer must provide the subsequent compiler
phases additional information about the particular lexeme
that matched

• Examples: lexemes, token names and associated attribute
values for the following statements.

7

printf ("Total = %d\n", score) ;

E = M * C ** 2

8

3. Specification of Patterns for
Tokens: Definitions

• An alphabet  is a finite set of symbols
(characters)

• A string s is a finite sequence of symbols
from 
– s denotes the length of string s
–  denotes the empty string, thus  = 0

• A language is a specific set of strings over
some fixed alphabet 

9

String Operations

• The concatenation of two strings x and y is
denoted by xy

• The exponentation of a string s is defined
by

s0 = 
si = si-1s for i > 0

note that s = s = s

10

Language Operations

• Union
L  M = {s  s  L or s  M}

• Concatenation
LM = {xy  x  L and y  M}

• Exponentiation
L0 = {}; Li = Li-1L

• Kleene closure
L* = i=0,…, Li

• Positive closure
L+ = i=1,…, Li

Example:
Compute
LD
LD
D4

D*
L(LD)*
D+

where
L = {A, B, ..., Z, a, b, ... , z}
and D = {0, 1, . . . 9}

11

Regular Expressions Over
Some Alphabet 

• Basis symbols:
–  is a regular expression denoting language {}
– a   is a regular expression denoting {a}

• If r and s are regular expressions denoting
languages L(r) and L(s) respectively, then
– rs is a regular expression denoting L(r)  L(s)
– rs is a regular expression denoting L(r) L(s)
– r* is a regular expression denoting (L(r))*

– (r) is a regular expression denoting L(r)

• A language defined by a regular expression is
called a regular set

Algebraic laws for regular expressions

12

Example 3.4 : Let  = {a, b}, what are languages denoted by
The following regular expressions:

a|b, (a|b)(a|b), a*, (a|b)*, a|a*b

13

Regular Definitions Over
Some Alphabet 

• Regular definitions introduce a naming convention
with name to regular expression bindings:

d1  r1

d2  r2

…
dn  rn

where:
– Each di is a new symbol, not in  and not the same as

any other of the d's, and

– each ri is a regular expression over
  {d1, d2, …, di-1 }

14

Regular Definitions: Examples

Numbers: 5280, 0.01234, 6.336E4, or 1.89E-4.

15

Regular Definitions: Extensions

• The following shorthands are often used:

• Examples:

One or more instances: + r+ = rr*

Zero or one instance: ? r? = r
Character classes: [a-z] = abc…z

16

4. Recognition of Tokens

Example 3.8: A Grammar for branching statements

The terminals of the grammar, which are if, then, else, relop ,
id, and number, are the names of tokens for lexical analyzer.

17

Patterns for tokens of Example 3.8

Tokens, patterns, and attribute values
18

whitespace

19

Transition Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9start letter 10 11*other

letter or digit

return(getToken(),
installID())

relop  <<=<>>>==

id  letter (letterdigit)*

20

Transition Diagrams (Cont.)

Whitespace

Unsigned number

21Sketch of implementation of relop
transition diagram

22

5. Lexical-Analyzer Generator:
Lex and Flex

• Lex and its newer cousin flex are scanner
generators

• Scanner generators systematically translate
regular definitions into C source code for
efficient scanning

• Generated code is easy to integrate in C
applications

23

Creating a Lexical Analyzer with
Lex and Flex

lex (or flex)

Lex source
program
lex.l

lex.yy.c

input
stream

C
compiler

a.out
sequence
of tokens

lex.yy.c

a.out

24

Structure of Lex Programs

• A Lex program consists of three parts:
declarations
%%
translation rules
%%
user-defined auxiliary procedures

• declarations
– C declarations in %{ %}
– regular definitions

• The translation rules are of the form:
pattern1 { action1 }
pattern2 { action2 }
…
patternn { actionn }

25

Regular Expressions in Lex
x match the character x
\. match the character .
“string” match contents of string of characters
. match any character except newline
^ match beginning of a line
$ match the end of a line
[xyz] match one character x, y, or z (use \ to escape -)
[^xyz]match any character except x, y, and z
[a-z] match one of a to z
r* closure (match zero or more occurrences)
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)
r1r2 match r1 then r2 (concatenation)
r1|r2 match r1 or r2 (union)
(r) grouping
r1\r2 match r1 when followed by r2

{d} match the regular expression defined by d

26

Example Lex Specification 1

%{
#include <stdio.h>
%}
%%
[0-9]+ { printf(“%s\n”, yytext); }
.|\n { }
%%
main()
{ yylex();
}

Contains
the matching

lexeme

Invokes
the lexical
analyzer

lex spec.l
gcc lex.yy.c -ll
./a.out < spec.l

Translation
rules

27

Example Lex Specification 2

%{
#include <stdio.h>
int ch = 0, wd = 0, nl = 0;
%}
delim [\t]+
%%
\n { ch++; wd++; nl++; }
^{delim} { ch+=yyleng; }
{delim} { ch+=yyleng; wd++; }
. { ch++; }
%%
main()
{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);
}

Regular
definitionTranslation

rules

28

Example Lex Specification 3

%{
#include <stdio.h>
%}
digit [0-9]
letter [A-Za-z]
id {letter}({letter}|{digit})*
%%
{digit}+ { printf(“number: %s\n”, yytext); }
{id} { printf(“ident: %s\n”, yytext); }
. { printf(“other: %s\n”, yytext); }
%%
main()
{ yylex();
}

Regular
definitionsTranslation

rules

29

Lex Specification: Example 3.8
%{ /* definitions of manifest constants */
#define LT (256)
…
%}
delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?
%%
{ws} { }
if {return IF;}
then {return THEN;}
else {return ELSE;}
{id} {yylval = install_id(); return ID;}
{number} {yylval = install_num(); return NUMBER;}
“<“ {yylval = LT; return RELOP;}
“<=“ {yylval = LE; return RELOP;}
“=“ {yylval = EQ; return RELOP;}
“<>“ {yylval = NE; return RELOP;}
“>“ {yylval = GT; return RELOP;}
“>=“ {yylval = GE; return RELOP;}
%%
int install_id()
…

Return
token to
parser

Token
attribute

Install yytext as
identifier in symbol table

Conflict Resolution in Lex

• Two rules that Lex uses to decide on the proper
lexeme to select, when several prefixes of the
input match one or more patterns:
1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more
patterns, prefer the pattern listed first in the Lex
program.

30

31

6. Finite Automata

• Design of a Lexical Analyzer Generator
– Translate regular expressions to NFA

– Translate NFA to an efficient DFA

regular
expressions

NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

Optional

32

Nondeterministic Finite Automata

• An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states
 is a finite set of symbols, the alphabet
 is a mapping from S   to a set of states
s0  S is the start state
F  S is the set of accepting (or final) states

33

Transition Graph

• An NFA can be diagrammatically represented by a
labeled directed graph called a transition graph

• Example
– an NFA recognizing the language of regular expression

(alb) * abb

0start a
1 32

b b

a

b

S = {0,1,2,3},  = {a,b}, s0 = 0, F = {3}

34

Transition Table

• The mapping  of an NFA can be
represented in a transition table

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}

35

The Language Defined by an NFA

• An NFA accepts an input string x if and only if
there is some path with edges labeled with
symbols from x in sequence from the start state to
some accepting state in the transition graph

• A state transition from one state to another on the
path is called a move

• The language defined by an NFA is the set of
input strings it accepts, such as (ab)*abb for the
example NFA

36

Deterministic Finite Automata

• A deterministic finite automaton (DFA) is a
special case of NFA
– No state has an -transition

– For each state s and input symbol a there is at most one
edge labeled a leaving s

• Each entry in the transition table is a single state
– At most one path exists to accept a string

– Simulation algorithm is simple

Simulating a DFA

37

0start a
1 32

b b

b
b

a

a

a

Example: A DFA that accepts (ab)*abb

38

7. From Regular Expressions to Automata

Conversion of an NFA into a DFA

• The subset construction algorithm converts an
NFA into a DFA using:
– -closure(s) = {s}  { ts  …  t}

– -closure(T) = sT -closure(s)

– move(T, a) = { st a s and t  T}

• The algorithm produces:
– Dstates -- the set of states of the new DFA

consisting of sets of states of the NFA

– Dtran -- the transition table of the new DFA

39

The Subset Construction Algorithm

Initially, -closure(s0) is the only state in Dstates
and it is unmarked
while (there is an unmarked state T in Dstates) {

mark T
for (each input symbol a  ) {

U = -closure(move(T,a))
if (U is not in Dstates)

add U as an unmarked state to Dstates
Dtran[T,a] := U

}
}

Computing -closure(T)

40

push all states of T onto stack;
initialize -closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled )

if (u is not in -closure(T)) {
add u to -closure(T) ;
push u onto stack;

}
}

41

Subset Construction Example 1

0
start a

1 10

2

b

b

a

b

3

4 5

6 7 8 9
 











A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

NFA for (ab)*abb

42

Subset Construction Example 2

Dstates
A = {0,1,3,7}
B = {2,4,7}
C = {8}
D = {7}
E = {5,8}
F = {6,8}

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






b

A
start

a

D

b

b a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

43

-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) = 

0

1

3

7

2

4

7

7 8
a ba a

none

Also used to simulate NFAs (!)

44

Simulating an NFA Using
-closure and move

45

N(r2)N(r1)

From Regular Expression to NFA
(Thompson’s Construction)

fi 

f
a

i

fi
N(r1)

N(r2)

start

start

start 

 



fi
start

N(r) fi
start







a

r1r2

r1r2

r*  

BASIS

INDUCTION

Construct an NFA for r = (a|b)*abb
46

ar 1

213 rrr 

br 2

 34 rr 

Parse tree

 45 rr

47

8. Design of a Lexical-Analyzer Generator
Construct an NFA from a Lex Program

s0

N(p1)

N(p2)
start




N(pn)


…

p1 { action1 }
p2 { action2 }
…
pn { actionn }

action1

action2

actionn

Lex specification with
regular expressions

NFA

DFA

Subset construction

48

Combining the NFAs of a Set of
Regular Expressions

2
a

1
start

6
a

3
start

4 5
b b

8b7
start

a b

a { action1 }
abb { action2 }
a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






49

Simulating the Combined NFA
Example 1

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

7 8

Must find the longest match:
Continue until no further moves are possible
When last state is accepting: execute action

action1

action2

action3

a ba a
none
action3

50

Simulating the Combined NFA
Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the
first action given in the Lex specification is executed

action1

action2

action3

a bb a
none
action2

action3

DFA's for Lexical Analyzers
51

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






DFA

Subset
construction

NFA

a ba a

a bb a

Examples

52

9. From RE to DFA Directly

• The “important states” of an NFA are those
without an -transition, that is if
move({s},a)   for some a then s is an
important state

• The subset construction algorithm uses only
the important states when it determines
-closure(move(T,a))

NFA Constructed for (a|b)*abb#

53

Note:
1. The NFA is constructed by Thompson’s Algorithm
2. The important states in the NFA are numbered

54

Algorithm:

• Augment the regular expression r with a special end
symbol # to make accepting states important: the new
expression is r#

• Construct a syntax tree T from r#

• Traverse the tree to construct functions nullable, firstpos,
lastpos, and followpos

• Construct Dstates, the set of states of DFA D, and Dtran,
the transition function for D.

• The start state of D is firstpos(n0), where node n0 is the
root of T. The accepting states are those containing the
position for the end marker symbol #.

INPUT : A regular expression r.
OUTPUT: A DFA D that recognizes L(r) .

55

Syntax Tree of (a|b)*abb#

*

|

1
a

2
b

3
a

4
b

5
b

#
6

concatenation

closure

alternation

position
number

(for leafs )

56

Annotating the Syntax Tree

• nullable(n): is true for a syntax-tree node n if and only
if the subexpression represented by n has  in its
language.

• firstpos(n): set of positions that can match the first
symbol of a string generated by the subexpression
represented by node n

• lastpos(n): the set of positions that can match the last
symbol of a string generated be the subexpression
represented by node n

• followpos(p): the set of positions that can follow
position p in the syntax-tree

57

Annotating the Syntax Tree (Cond.)

Node n nullable(n) firstpos(n) lastpos(n)

Leaf  true  

Leaf i false {i} {i}

|
/ \

c1 c2

nullable(c1)
or

nullable(c2)

firstpos(c1)


firstpos(c2)

lastpos(c1)


lastpos(c2)

•
/ \

c1 c2

nullable(c1)
and

nullable(c2)

if nullable(c1) then
firstpos(c1) 

firstpos(c2)
else firstpos(c1)

if nullable(c2) then
lastpos(c1) 

lastpos(c2)
else lastpos(c2)

*
|
c1

true firstpos(c1) lastpos(c1)

58

Annotated Syntax Tree of (a|b)*abb#

{6}{1, 2, 3}

{5}{1, 2, 3}

{4}{1, 2, 3}

{3}{1, 2, 3}

{1, 2}{1, 2} *

{1, 2}{1, 2} |

{1}{1} a {2}{2} b

{3}{3} a

{4}{4} b

{5}{5} b

{6}{6} #

nullable

firstpos lastpos

1 2

3

4

5

6

59

Algorithm: followpos

for each node n in the tree {
if n is a cat-node with left child c1 and right child c2

for each i in lastpos(c1) {
followpos(i) := followpos(i)  firstpos(c2)

}
else if n is a star-node

for each i in lastpos(n) {
followpos(i) := followpos(i)  firstpos(n)

}
}

60

Algorithm: Construct Dstates, and Dtran

s0 = firstpos(n0) where n0 is the root of the syntax tree
Dstates := {s0} and s0 is unmarked
while (there is an unmarked state S in Dstates) {

mark S;

for each input symbol a   {
let U be the union of followpos(p) for all p

in S that correspond to a;
if (U not in Dstates)

add U as an unmarked state to Dstates
Dtran[S,a] = U

}
}

61

From RE to DFA Directly: Example

1,2,3start a 1,2,
3,4

1,2,
3,6

1,2,
3,5

b b

b b

a

a

a

Node followpos

1(a) {1, 2, 3}

2(b) {1, 2, 3}

3(a) {4}

4(b) {5}

5(b) {6}

6(#) -

1

2

3 4 5 6
b b

b

b

b

a

a

a
a

Dtran[{1,2,3}, a]
= follows(1)  follows(3)
={1, 2, 3, 4}

Dtran[{1,2,3}, b]
= follows(2)
={1, 2, 3, 4}

62

Minimize the Number of States of a
DFA

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

AC
start

B D E
b b

b

a
b

a

a a

