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Outline
• This chapter is an introduction to the compiling techniques 

in Chapters 3 to 6 of the Dragon book

• It illustrates the techniques by developing a working Java 
program that translates representative programming 
language statements into three-address code

• The major topics are
2. Syntax Definition 

3. Syntax-Directed Translation 

4. Parsing

5. A Translator for Simple Expressions

6. Lexical Analysis 

7. Symbol Tables 

8. Intermediate Code Generation 
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An Example Source Code



The Generated Intermediate Code
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Compiler Front End
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• For simplicity, the parser will use the syntax-directed
translation of infix expressions to postfix form. 

• For example, the postfix form of the expression 9-5+2 is
95-2+
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2. Syntax Definition

• Context-free grammar is a 4-tuple with
– A set of tokens (terminal symbols)

– A set of nonterminals

– A set of productions

– A designated start symbol

if ( expression ) statement else statement

An if-else statement in Java can have the form

This structuring rule can be expressed as 

stmt if ( expr ) stmt else stmt

The rule called 
production, left 
side called head, 
and right side 
called body
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Example Grammar

list  list + digit

list  list - digit

list  digit

digit  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G = <{list,digit}, {+,-,0,1,2,3,4,5,6,7,8,9}, P, list>

with productions P = 

Context-free grammar for simple expressions:
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Derivation and Parsing

• A grammar derives strings (called derivation) by 
– beginning with the start symbol and repeatedly

– replacing a nonterminal by the body of a production for 
that nonterminal. 

• The terminal strings that can be derived from the start 
symbol form the language defined by the grammar

• Parsing is the problem of taking a string of terminals 
and figuring out how to derive it from the start symbol 
of the grammar, and if it cannot be derived from the 
start symbol of the grammar, then reporting syntax 
errors within the string.
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Derivation Example

list
 list + digit
 list - digit + digit
 digit - digit + digit
 9 - digit + digit
 9 - 5 + digit
 9 - 5 + 2

• This is an example leftmost derivation, because we replaced
the leftmost nonterminal (underlined) in each step.

• Likewise, a rightmost derivation replaces the rightmost
nonterminal in each step
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Parse Trees

• The root of the tree is labeled by the start symbol

• Each leaf of the tree is labeled by a terminal 
(=token) or 

• Each interior node is labeled by a nonterminal

• If A  X1 X2 … Xn is a production, then node A has 
immediate children X1, X2, …, Xn where Xi is a 
(non)terminal or  ( denotes the empty string)
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Parse Tree Example

Parse tree of the string 9-5+2 using grammar G

list

digit

9 - 5 + 2

list

list digit

digit
The sequence of
leafs is called the

yield of the parse tree
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Ambiguity

string  string + string | string - string | 0 | 1 | … | 9

G = <{string}, {+,-,0,1,2,3,4,5,6,7,8,9}, P, string>

with production P = 

Consider the following context-free grammar:

This grammar is ambiguous, because more than one parse tree
represents the string 9-5+2

A grammar can have more than one parse tree 
generating a given string of terminals. Such a 
grammar is said to be ambiguous
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Two parse trees for 9-5+2



14

Associativity of Operators

right  letter = right | letter

left  left + digit | digit

Left-associative operators have left-recursive productions

Right-associative operators have right-recursive productions

String a=b=c has the same meaning as a=(b=c)

String 9+5+2 has the same meaning as (9+5)+2



Parse trees for left- and right-
associative grammars
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Precedence of Operators

expr  expr + term | term
term  term * factor | factor
factor  digit | ( expr )

Operators with higher precedence “bind more tightly”

String 2+3*5 has the same meaning as 2+(3*5)
expr

expr term

factor

+2 3 * 5

term

factor

term

factor

digit

digit

digit
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Syntax (Grammar)

Subset of Java
Statements

Expressions
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3. Syntax-Directed Translation

• Uses a CF grammar to specify the syntactic 
structure of the language

• AND associates a set of attributes with the 
terminals and nonterminals of the grammar

• AND associates with each production a set of 
semantic rules to compute values of attributes

• A parse tree is traversed and semantic rules 
applied: after the tree traversal(s) are completed, 
the attribute values on the nonterminals contain 
the translated form of the input
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Synthesized and Inherited 
Attributes

• An attribute is said to be …
– synthesized if its value at a parse-tree node is 

determined from the attribute values at the 
children of the node

– inherited if its value at a parse-tree node is 
determined by the parent (by enforcing the 
parent’s semantic rules) 
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Example Attribute Grammar

expr  expr1 + term
expr  expr1 - term
expr  term
term  0
term  1
…
term  9

expr.t := expr1.t || term.t || “+”
expr.t := expr1.t || term.t || “-”
expr.t := term.t
term.t := “0”
term.t := “1”
…
term.t := “9”

Production Semantic Rule

String concat operator

Syntax-directed definition for infix to postfix translation
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Example Annotated Parse Tree

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Attribute values at nodes in a parse tree
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Depth-First Traversals

procedure visit(n : node);
begin

for each child c of n, from left to right do
visit(c);

evaluate semantic rules at node n
end
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Depth-First Traversals (Example)

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Note: all attributes are
of the synthesized type
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Translation Schemes
• A translation scheme is a CF grammar embedded 

with semantic actions by attaching program 
fragments to productions in the grammar

rest  + term { print(“+”) } rest

Embedded
semantic action

rest

term rest+ { print(“+”) }

An extra leaf is constructed for a semantic action
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Example Translation Scheme
Grammar

expr  expr + term
expr  expr - term
expr  term
term  0
term  1
…
term  9

{ print(“+”) }
{ print(“-”) }

{ print(“0”) }
{ print(“1”) }
…
{ print(“9”) }

Actions for translating into postfix notation
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Example Translation Scheme
Parse Tree

expr

term

9

-

5

+

2

expr

expr term

term

{ print(“-”) }

{ print(“+”) }

{ print(“9”) }

{ print(“5”) }

{ print(“2”) }

Translates 9-5+2 into postfix 95-2+
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4. Parsing

• Parsing = process of determining if a string of 
tokens can be generated by a grammar

• For any CF grammar there is a parser that takes at 
most O(n3) time to parse a string of n tokens

• Linear algorithms suffice for parsing 
programming language source code

• Top-down parsing “constructs” a parse tree from 
root to leaves

• Bottom-up parsing “constructs” a parse tree from 
leaves to root



Top-Down Parsing

• The top-down construction of a parse tree is done 
by starting with the root, labeled with the starting 
nonterminal , and repeatedly performing the 
following two steps.
1. At node N, labeled with nonterminal A, select one of 

the productions for A and construct children at N for 
the symbols in the production body.

2. Find the next node at which a subtree is to be 
constructed, typically the leftmost unexpanded 
nonterminal of the tree.
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Top-Down Parsing Example
29

for ( ; expr ; expr ) other

Grammar

Input string

A parse tree according to the grammar
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Predictive Parsing

• Recursive descent parsing is a top-down method of 
syntax analysis in which a set of recursive procedures 
is used to process the input.
– Each nonterminal has one (recursive) procedure that is 

responsible for parsing the nonterminal’s syntactic 
category of input tokens

– When a nonterminal has multiple productions, each 
production is implemented in a branch of a selection 
statement based on input look-ahead information

• Predictive parsing is a special form of recursive 
descent parsing where we use one lookahead token to 
unambiguously determine the parse operations
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FIRST
FIRST() is the set of terminals that appear as the first 
symbols of one or more strings generated from 

FIRST(stmt) = { expr, if, for, other }
FIRST(expr) = {expr}
FIRST( for (optexpr ; optexpr ; optexpr ) stmt) = {for}



34

How to use FIRST

expr  term rest
rest  + term rest

| - term rest
| 

A  
| 

When a nonterminal A has two (or more) productions as in

Then FIRST () and FIRST() must be disjoint for
predictive parsing to work

procedure rest();
begin

if lookahead in FIRST(+ term rest) then
match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then
match(‘-’); term(); rest()

else return
end;

We use FIRST to write a predictive parser as follows
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Left Factoring

When more than one production for nonterminal A starts
with the same symbols, the FIRST sets are not disjoint

We can use left factoring to fix the problem

stmt  if expr then stmt endif
| if expr then stmt else stmt endif

stmt  if expr then stmt opt_else
opt_else  else stmt endif

| endif
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Left Recursion

When a production for nonterminal A starts with a
self reference then a predictive parser loops forever

A  A 
| 
| 

We can eliminate left recursive productions by systematically
rewriting the grammar using right recursive productions

A   R
|  R

R   R
| 
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5. A Translator for Simple Expressions

expr  expr + term
expr  expr - term
expr  term
term  0
term  1
…
term  9

{ print(“+”) }
{ print(“-”) }

{ print(“0”) }
{ print(“1”) }
…
{ print(“9”) }

expr  term rest
rest  + term { print(“+”) } rest | - term { print(“-”) } rest | 
term  0 { print(“0”) }
term  1 { print(“1”) }
…
term  9 { print(“9”) }

Translation scheme after left recursion elimination

Actions for translating into postfix notation



Example Parse Tree
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Pseudocode for nonterminals expr, rest, and term.
39



Java program to translate …
40



… infix expressions into postfix form
41
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main()
{   lookahead = getchar();

expr();
}
expr()
{   term();

while (1) /* optimized by inlining rest()
and removing recursive calls */

{   if (lookahead == ‘+’)
{   match(‘+’); term(); putchar(‘+’);
}
else if (lookahead == ‘-’) 
{   match(‘-’); term(); putchar(‘-’);
}
else break;

}
}
term()
{   if (isdigit(lookahead))

{   putchar(lookahead); match(lookahead);
}
else error();

}
match(int t)
{   if (lookahead == t)

lookahead = getchar();
else error();

}
error()
{   printf(“Syntax error\n”);

exit(1);
}

expr  term rest

rest  + term { print(“+”) } rest
| - term { print(“-”) } rest
| 

term  0 { print(“0”) }
term  1 { print(“1”) }
…
term  9 { print(“9”) }

C++ program 
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6. Lexical Analysis
• The expression only deals with single digit integer and no 

white space is allowed. So, no lexical analysis is needed. 

• Expend to multiple digit integer and to include identifiers
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Lexical Analyzer

• To expend to multiple digit integer and to 
include identifiers, a lexical analyzer is 
needed.

• Typical tasks of the lexical analyzer:
– Remove white space and comments

– Encode constants as tokens

– Recognize keywords

– Recognize identifiers and store identifier names 
in a global symbol table
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Constants (Number)

Lexical 
analyzer

<num, 31>  <+>   <num, 28>   <+>  <num, 59>

31 + 28 + 59

Grouping digits into integers

token treminal integer-valued attribute
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Keywords and Identifiers

Lexical 
analyzer <id, "count">  <=>  <id, "count" >  <+>  <id, "increment" >  < ; >

count = count + increment;

token treminal
lexeme
string-valued attribute

To distinguish keywords from identifiers, use a string table.

(key, value)

(lexeme, token)

Hashtable words = new Hashtable();



A Lexical Analyzer
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Token scan () {
skip white space;
handle numbers;
handle reserved words and identifiers;
/ * treat read-ahead character peek as a token * /
Token t = new Token (peek) ;
peek = blank /* initialization*/ ;
return t;

}

pseudocode



Classes Token and Tag
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In C++, constant is defined as below
#define NUM 256



Subclasses Num and Word
49



Code for a lexical analyzer: Part 1 / 3
50



Code for a lexical analyzer: Part 2 / 3
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Code for a lexical analyzer: Part 3 / 3
52



7. Symbol Tables
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Given input :
{ int x ; char y ; { bool y ; x ; y ; } x ; y ; }

The goal is to produce output:
{ { x : int ; y : bool ; } x : int ; y : char ; }

The most- closely nested rule for blocks 
an identifier x is in the scope of the most-closely nested 
declaration of x; that is, the declaration of x found by 
examining blocks inside-out, starting with the block in 
which x appears



Symbol Table Per Scope
54

Chained symbol tables



Class Env implements 
chained symbol tables 1/2 
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Class Env implements 
chained symbol tables 2/2 
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The Use of Symbol Tables 1/2
57

The use of symbol tables for translating a language with blocks



The Use of Symbol Tables 2/2
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The use of symbol tables for translating a language with blocks



8. Intermediate Code Generation

• Consider intermediate representations for expressions 
and statements (No declarations)

• Two most important intermediate representations are
– Trees, including parse trees and (abstract) syntax trees

– Linear representations, especially "three-address code.“

• Construction of Syntax Trees
– Syntax Trees for Statements

– Representing Blocks in Syntax Trees

– Syntax Trees for Expressions

• Static Checking

• Emit three-address code along with the syntax tree

59



Syntax Trees for Statements
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One class per statement

AST

Create a While node

while statement

Semantic actionProduction

Node

ExprStmt

While If Do Eval



Syntax Trees for Statements (Cont.)
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Block

sequence



Syntax Trees for Expressions
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• Group "similar" operators to reduce the number of
classes of nodes in an implementation of expressions. 

• "similar" to mean that the type-checking and code-
generation rules for the operators are similar



Syntax Trees for Expressions
63



Static Checking
• Static checks are consistency checks that are done during 

compilation
– Syntactic Checking.

• There is more to syntax than grammars

– Type Checking

• Assure that an operator or function is applied to the right 
number and type of operands

• L-values and R-values
– r-values are what we usually think of as "values," while l-

values are locations.

• Coercion 
– A coercion occurs if the type of an operand is automatically 

converted to the type expected by the operator
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Three-Address Code

• Show how to write functions that process the 
syntax tree and, as a side-effect, emit the 
necessary three-address code

• Three-Address Instructions

• Translation of Statements
– Example: if expr then stmt1

65
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.

Code layout for 
if-statements

Function gen in class If 
generates three-address code

if expr then stmt1
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Using Translation Scheme

stmt  if expr 
{  after = newlabel(); 

print(“ifFalse goto after:”); }
then stmt1

{  print(“after: ”); }

code for expr

ifFalse goto after

code for stmt1

after:

if expr then stmt1



Translation of Expressions
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Pseudocode for function lvalue

i - j +k

tl  = i - j
t2 = tl + k

2 *a [i]

tl  = a [ i ]
t2 = 2 * tl

a [2*k]

t = 2*k
a [t]

t3 =  j - k
t2 =  a [t3]
t1 = 2 * t2
a [i] =  t1

a [ i ] =  2 * a[j – k]
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Pseudocode for function rvalue
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