
CS 4300: Compiler Theory

Chapter 5

Syntax-Directed Translation

Dr. Xuejun Liang

Outlines (Sections)

1. Syntax-Directed Definitions

2. Evaluation Orders for SDD's

3. Applications of Syntax-Directed Definition

4. Syntax-Directed Translation Schemes

5. Implementing L-Attributed SDD's

2

Quick Review of Last Lecture

• Syntax-Directed Translation Schemes

– Postfix Translation Schemes

– Parser-Stack Implementation of Postfix SDT’s

– SDT's With Actions Inside Productions

– Eliminating Left Recursion From SDT’s

E → E + T {print(‘+’);}

E → T

E → T R

R → + T {print(‘+’);} R

R → 

A → X { R.i = f(X.x) } R { A.a = R.s }

R → Y { R1.i = g(R.i, Y.y) } R1 { R.s = R1.s }

R →  { R.s = R.i }

A → A1 Y { A.a = g(A1.a, Y.y) }

A → X { A.a = f(X.x) }

SDT's for L-Attributed Definitions

• Assume that the underlying grammar can be parsed

top-down

• The rules for turning an L-attributed SDD into an SDT

are as follows

1. Embed the action that computes the inherited attributes for

a nonterminal A immediately before that occurrence of A

in the body of the production. If several inherited attributes

for A depend on one another in an acyclic fashion, order

the evaluation of attributes so that those needed first are

computed first.

2. Place the actions that compute a synthesized attribute for

the head of a production at the end of the body of that

production.

4

Example: Typesetting

5

This grammar is ambiguous, but we can still use it to parse bottom-

up if we make subscripting and juxtaposition right associative, with

subscripting taking precedence over juxtaposition.

B → B1 B2 | B1 sub B2 | (B1) | text

Constructing larger boxes from smaller ones

The input string a sub i sub j b sub k will produce ki ba
j

Consider the following grammar

SDD for typesetting boxes

6

B.ps inherited

B.ht synthesized

B.dp synthesized

The point size is used

to set text within a box

SDT for typesetting boxes
7

B.ps inherited

B.ht synthesized

B.dp synthesized

Example: Intermediate Code Generation

8

Consider the following grammar

S → while (C) S1

Inherited attributes

S.next

C.true

C.false

synthesized attributes

S.code

C.code

S.code

……

……

if true goto C.true

if false goto C.false

……

……

goto S1.next

S1.next

C.false

C.true

C.code

S1.code

Example (Cont.)

9

SDD for while-statements

SDT for while-statements

S.code

……

……

if true goto C.true

if false goto C.false

……

……

goto S1.next

S1.next

C.false

C.true

C.code

S1.code

S.next

L1

L2

5. Implementing L-Attributed SDD's

Four methods for translation during parsing:

A. Use a recursive-descent parser with one function for each

nonterminal.

– The function for nonterminal A receives the inherited attributes of

A as arguments and returns the synthesized attributes of A.

B. Generate code on the fly, using a recursive-descent parser.

C. Implement an SDT in conjunction with an LL-parser.

– The attributes are kept on the parsing stack, and the rules fetch the

needed attributes from known locations on the stack.

D. Implement an SDT in conjunction with an LR-parser.

– If the underlying grammar is LL, we can always handle both the

parsing and translation bottom-up.

10

A. Translation During Recursive-Descent Parsing

11

Example: Implementing while-statement S → while (C) S1

S.code

……

……

if true goto C.true

if false goto C.false

……

……

goto S1.next

C.code

S1.code

S.next

L1

L2

Figure 5.29: Implementing with a recursive-descent parser

B. On-The-Fly Intermediate Code Generation

12

Recursive-descent code generation for while-statement

S.code

……

……

if true goto C.true

if false goto C.false

……

……

goto S1.next

C.code

S1.code

S.next

L1

L2

Figure 5.31: On-the-fly recursive-descent code generation

13

SDT for on-the-fly code generation for while statement

Incidentally, we can make the same change to the underlying

SDT: turn the construction of a main attribute into actions that

emit the elements of that attribute

Figure 5.32: SDT for on-the-fly code generation for while statement

Figure 5.28: SDT for while-statement

C. L-Attributed SDD's and LL Parsing

• For an SDT with embedded actions converted from an L-
attributed SDD with an LL-grammar, the translation can be
performed during LL parsing by extending the parser stack
to hold actions and certain data items needed for attribute
evaluation.

• In addition to records representing terminals and
nonterminals, the parser stack will hold

– Inherited attributes for a nonterminal A

• Placed inside record A

– Action-records to represent actions to be executed

• Placed above A

– Synthesize-records to hold the synthesized attributes for a
nonterminal A

• Placed below A

14

Example 5.23: Implement the SDT of Fig.5.32

15

Just before expanding S

Figure 5.32: SDT for on-the-fly code generation for while statement

This example will illustrate the implementation of inherited

attributes during LL parsing by copying attribute values.

Example 5.23 (Cont.)

16

Immediately after expanding S

17

After the action above C is performed

Note: L1 = y, L2 = z

Example 5.23 (Cont.)

After the action above C is performed

D. Bottom-Up Parsing of L-Attributed SDD's

L-attributed SDD on LL grammar can be adapted to compute

the same SDD on the new grammar during an LR parse

1. Start with the SDT with embedded actions before each

nonterminal to compute its inherited attributes and an action at

the end of the production to compute synthesized attributes.

2. Introduce into a distinct marker nonterminal M in place of each

embedded action, and add one production M →  .

3. Modify the action a if M replaces it in some production

A →{a}, and associate with M →  an action a' that

a) Copies, as inherited attributes of M, any attributes of A or

symbols of  that action a needs.

b) Computes attributes in the same way as a, but makes those

attributes be synthesized attributes of M.

18

Turn SDT to Operate with LR Parse

19

S → while (M C) N S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

M →  { L1 = new(); L2 = new(); C.false = S.next; C.true = L2;}

N →  { S1.next = L1; }

S → while ({ L1 = new(); L2 = new(); C.false = S.next; C.true = L2; }

C) { S1.next = L1 ; }

S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

Example 5.26: Let us turn the SDT of Fig. 5.28 into an SDT

that can operate with an LR parse of the revised grammar

Underlying

grammar

Example 5.26 (Cont.)

20

LR parsing stack after

reduction of  to M

L1 = new();

L2 = new();

C.true = L2;

C.false = stack[top-3].next;

Code with M→

S → while (M C) N S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

M →  { L1 = new(); L2 = new(); C.false = S.next; C.true = L2;}

N →  { S1.next = L1; }

Example 5.26 (Cont.)

21

Stack just before reduction of the while-production body to S

Code with N→

S1.next = stack[top-3].L1;

Code with reducing

the while body to S.

tempCode = label ||stack[top-4].L1||

stack[top-3].code || label ||

stack[top-4].L2 || stack[top].code;

top = top-6; stack[top].code = tempCode;

S → while (M C) N S1 { S.code = label || L1 || C.code || label || L2 || S1.code; }

M →  { L1 = new(); L2 = new(); C.false = S.next; C.true = L2;}

N →  { S1.next = L1; }

