## CS 4300: Compiler Theory

## Chapter 4 Syntax Analysis

Dr. Xuejun Liang

### Outlines (Sections)

- 1. Introduction
- 2. Context-Free Grammars
- 3. Writing a Grammar
- 4. Top-Down Parsing
- 5. Bottom-Up Parsing
- 6. Introduction to LR Parsing: Simple LR
- 7. More Powerful LR Parsers
- 8. Using Ambiguous Grammars
- 9. Parser Generators

### Quick Review of Last Lecture

- LR Parsing
  - Model of an LR Parser
  - LR Parsing Driver
  - Example LR(0) Parsing Table
- SLR: Simple extension of LR(0) shift-reduce parsing
  - Reduction  $A \rightarrow \alpha$  on symbols in FOLLOW(A)
  - SLR Parsing
  - Construct SLR Parsing Table
  - Moves of an SLR parser on input using SLR Parsing Table

### SLR, Ambiguity, and Conflicts

- SLR grammars are unambiguous
- But not every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

| 1. $S \rightarrow L = R$ | 2. $S \rightarrow R$  |
|--------------------------|-----------------------|
| 3. $L \rightarrow R$     | 4. $L \rightarrow id$ |
| 5. $R \rightarrow L$     |                       |



### Viable Prefixes

- During the LR parsing, the stack contents must be a prefix of a right-sentential form
  - If the stack holds  $\alpha$ , the rest of input is x
  - There is a right-most derivation  $S \stackrel{*}{\Rightarrow} \alpha x$
- But, not all prefixes of right-sentential forms can appear on the stack
  - The parser must not shift past the handle
  - Example: Suppose  $E \stackrel{*}{\Rightarrow} F * \operatorname{id} \stackrel{*}{\Rightarrow} (E) * \operatorname{id}$ the stack must not hold (E)\*, as (E) is a handle.
- The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes

### Viable Prefixes (Cont.)

- A viable prefix is a prefix of a right-sentential form that does not continue past the right end of the leftmost handle of that sentential form
- We say item  $A \rightarrow \beta_1 \bullet \beta_2$  is valid for a viable prefix  $\alpha \beta_1$  if there is a derivation  $S' \stackrel{*}{\Rightarrow} \alpha Aw \stackrel{\Rightarrow}{\underset{rm}{\Rightarrow}} \alpha \beta_1 \bullet \beta_2 w$ .
- A  $\rightarrow \beta_1 \bullet \beta_2$  is valid for  $\alpha \beta_1$  and  $\alpha \beta_1$  is on the parsing stack
  - If  $\beta_2 \neq \varepsilon$ , then shift
  - $\beta_2 = \varepsilon$ , then reduce

### Viable Prefixes (Cont.)

- The set of valid items for a viable prefix  $\delta$  is exactly the set of items reached from the initial state along the path labeled  $\delta$  in the LR(0) automaton for the grammar
- Example: See state 7 of automaton on next slide.

 $T \rightarrow \underline{T*} \bullet \underline{F}, F \rightarrow \bullet (\underline{E}), \text{ and } F \rightarrow \bullet \underline{id}$  are valid items for viable prefix E+T\*

| $E' \Rightarrow E$                                                         | $E' \Rightarrow E$                                                  | $E' \Rightarrow E$                                                                    |
|----------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $\stackrel{rm}{\Rightarrow} E + T$                                         | $\stackrel{rm}{\Rightarrow} E + T$                                  | $\stackrel{rm}{\Rightarrow} E + T$                                                    |
| $\stackrel{rm}{\Rightarrow} E + \underline{T * F}$                         | $\stackrel{rm}{\Rightarrow} E + T * F$                              | $\stackrel{rm}{\Rightarrow} E + T * F$                                                |
| $rm \overline{\mathcal{O}} \overline{\mathcal{G}} \overline{\mathcal{G}},$ | rm                                                                  | rm                                                                                    |
|                                                                            | $\Rightarrow \underbrace{E+T*}_{rm} \underbrace{(E)}_{\mathcal{O}}$ | $\Rightarrow \underbrace{E+T*}_{rm} \underbrace{\operatorname{id}}_{\mathcal{O}_{2}}$ |

LR(0) Automaton for expression

Grammar:  $E \rightarrow E + T \mid T$   $T \rightarrow T * F \mid F$   $F \rightarrow (E)$  $F \rightarrow id$ 

 $T \rightarrow T * \bullet F$ ,  $F \rightarrow \bullet (E)$ , and  $F \rightarrow \bullet id$ are valid items for viable prefix E+T\*



### 7. LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- LR(1) item = LR(0) item + lookahead

LR(0) item: [ $A \rightarrow \alpha \bullet \beta$ ] LR(1) item:  $[A \rightarrow \alpha \bullet \beta, a]$ 

### SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar

1. 
$$S \rightarrow L = F$$

$$2. \quad S \to R$$

$$3. \quad L \to * R$$

4. 
$$L \rightarrow id$$

5.  $R \rightarrow L$ 



Should not reduce on =, because no right-sentential form begins with R=

### LR(1) Items

- An LR(1) item

   [A→α•β, a]
   contains a lookahead terminal a, meaning α
   already on top of the stack, expect to parse βa
- For items of the form

 $[A \rightarrow \alpha \bullet, a]$ 

the lookahead *a* is used to reduce  $A \rightarrow \alpha$  only if the next lookahead of the input is *a* 

#### • For items of the form

 $[A \rightarrow \alpha \bullet \beta, a]$ 

with  $\beta \neq \epsilon$  the lookahead has no effect

# The Closure Operation for LR(1) Items

- 1. Start with *closure(I)* = *I*
- 2. If  $[A \rightarrow \alpha \bullet B\beta, a] \in closure(I)$  then for each production  $B \rightarrow \gamma$  in the grammar and each terminal  $b \in FIRST(\beta a)$ , add the item  $[B \rightarrow \bullet \gamma, b]$ to *closure(I*) if not already in *closure(I*)
- 3. Repeat 2 until no new items can be added

### The Goto Operation for LR(1) Items

- 1. For each item  $[A \rightarrow \alpha \bullet X\beta, a] \in I$ , add the set of items *closure*({ $[A \rightarrow \alpha X \bullet \beta, a]$ }) to *goto*(*I*,*X*) if not already there
- Repeat step 1 until no more items can be added to goto(I,X)

# Constructing the set of LR(1) Items of a Grammar

- 1. Augment the grammar with a new start symbol S' and production  $S' \rightarrow S$
- 2. Initially, set  $C = \{ closure(\{[S' \rightarrow \bullet S, \$]\}) \}$ (this is the start state of the DFA)
- 3. For each set of items  $I \in C$  and each grammar symbol  $X \in (N \cup T)$  such that  $goto(I,X) \notin C$  and  $goto(I,X) \neq \emptyset$ , add the set of items goto(I,X) to C
- 4. Repeat 3 until no more sets can be added to C

### Example Grammar and LR(1) Items

- Augmented LR(1) grammar (4.55):
  - $S' \rightarrow S$  $S \rightarrow C C$  $C \rightarrow c C \mid d$
- LR(1) items

| • LR(1) items                                     | $I_1: S' \to S \cdot, \$$                                                                          | $I_5: S \rightarrow CC \cdot, \$$                                                |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $I_0: S \to \cdot S, $                            | $I_2:  S \to C \cdot C, \ \$$ $C \to \cdot cC, \ \$$ $C \to \cdot d, \ \$$                         | $I_{6}:  C \to c \cdot C, \ \$ \\  C \to \cdot cC, \ \$ \\  C \to \cdot d, \ \$$ |
| $S \to \cdot CC, \ \$$<br>$C \to \cdot cC, \ c/d$ | $I \qquad \begin{array}{ccc} I_3: & C \to c \cdot C, \ c/d \\ & C \to \cdot cC, \ c/d \end{array}$ | $I_7: C \to d \cdot, \$$                                                         |
| $C \rightarrow \cdot d, \ c/d$                    | $C \rightarrow \cdot d, c/d$                                                                       | $I_8: C \rightarrow cC \cdot, c/d$                                               |
|                                                   | $I_4:  C \to d \cdot, \ c/d$                                                                       | $I_9:  C \to c C \cdot, \$                                                       |

#### LR(1) items and goto Operation for Grammar (4.55)

 $I_0: S \to S,$  goto $(I_0, S) = I_1$  $S \rightarrow CC$ , \$ goto(I<sub>0</sub>, C) = I<sub>2</sub>  $C \rightarrow cC, c/d \text{ goto}(I_0, c) = I_3$  $C \rightarrow d, c/d$  $goto(I_0, d) = I_4$ 

 $I_1: S' \to S \cdot, \$$ 

 $I_2: S \to C \cdot C, \$$  $C \rightarrow cC$ , \$  $goto(I_2, c) = I_6$  $C \rightarrow d$ , \$ goto(I<sub>2</sub>, d) = I<sub>7</sub>

 $I_3: C \rightarrow c \cdot C, c/d \text{ goto}(I_3, C) = I_8$ 

 $C \rightarrow cC, c/d \text{ goto}(I_3, c) = I_3$ 

 $C \rightarrow d, c/d$  goto(I<sub>3</sub>, d) = I<sub>4</sub>

 $goto(I_2, C) = I_5$ 

- $I_4: C \to d \cdot, c/d$
- $I_5: S \to CC,$
- $I_6: C \rightarrow c \cdot C, \$ goto(I_6, C) = I_9$  $C \rightarrow cC$ , \$  $goto(I_6, c) = I_6$  $C \rightarrow d,$  $goto(I_6, d) = I_7$

 $S' \rightarrow S$ 

 $S \rightarrow C C$ 

 $C \rightarrow c C \mid d$ 

- $I_7: C \to d_{\cdot},$
- $I_8: C \to cC \cdot, c/d$
- $I_9: C \to cC \cdot, \$$



### Example Grammar and LR(1) Items

• Unambiguous LR(1) grammar:

$$S \rightarrow L = R$$
$$S \rightarrow R$$
$$L \rightarrow * R$$
$$L \rightarrow id$$
$$R \rightarrow L$$

- Augment with  $S' \rightarrow S$
- LR(1) items (next slide)

$$I_{0}: [S' \rightarrow \bullet S, \$] \qquad \text{goto}(I_{0},S) = \\ [S \rightarrow \bullet L=R, \$] \qquad \text{goto}(I_{0},L) = \\ [S \rightarrow \bullet R, \$] \qquad \text{goto}(I_{0},R) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{0},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{0},*) = \\ [R \rightarrow \bullet L, \$] \qquad I_{1}: [S' \rightarrow S \bullet, \$] \qquad I_{1}: [S' \rightarrow S \bullet, \$] \qquad I_{1}: [S' \rightarrow S \bullet, \$] \qquad I_{2}: [S \rightarrow L \bullet =R, \$] \qquad \text{goto}(I_{2},=) = \\ [R \rightarrow L, \$] \qquad I_{3}: [S \rightarrow R \bullet, \$] \qquad I_{3}: [S \rightarrow R \bullet, \$] \qquad I_{4}: [L \rightarrow * \bullet R, =] \qquad \text{goto}(I_{4},R) = \\ [R \rightarrow \bullet L, =] \qquad \text{goto}(I_{4},R) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},*) = \\ [L \rightarrow \bullet *R, =] \qquad \text{goto}(I_{4},$$

$$goto(I_6, R) = I_9$$

$$goto(I_6, L) = I_{10}$$

$$goto(I_6, *) = I_{11}$$

$$goto(I_6, id) = I_{12}$$

$$Grammar$$

Grammar  

$$S \rightarrow L = R$$
  
 $S \rightarrow R$   
 $L \rightarrow * R$   
 $L \rightarrow id$   
 $R \rightarrow L$ 



## Constructing Canonical LR(1) Parsing Tables

- 1. Augment the grammar with  $S' \rightarrow S$
- 2. Construct the set  $C = \{I_0, I_1, \dots, I_n\}$  of LR(1) items
- 3. If  $[A \rightarrow \alpha \bullet a\beta, b] \in I_i$  and  $goto(I_i, a) = I_j$  then set action[i, a] = shift j
- 4. If  $[A \rightarrow \alpha \bullet, a] \in I_i$  then set action[i,a]=reduce  $A \rightarrow \alpha$  (apply only if  $A \neq S'$ )
- 5. If  $[S' \rightarrow S \bullet, \$]$  is in  $I_i$  then set action[i,\$]=accept
- 6. If  $goto(I_i, A) = I_i$  then set goto[i, A] = j
- 7. Repeat 3-6 until no more entries added
- 8. The initial state *i* is the  $I_i$  holding item  $[S' \rightarrow \bullet S, \$]$

#### Example Canonical LR(1) Parsing Table



22

### Example LR(1) Parsing Table

Grammar: 1. S'  $\rightarrow$  S 2. S  $\rightarrow$  L = R 3. S  $\rightarrow$  R 4. L  $\rightarrow$  \* R 5. L  $\rightarrow$  id 6. R  $\rightarrow$  L

|        | id  | *   | =  | \$  | S | L  | R  |
|--------|-----|-----|----|-----|---|----|----|
| 0      | s5  | s4  |    |     | 1 | 2  | 3  |
| 1      |     |     |    | acc |   |    |    |
| 2<br>3 |     |     | s6 | r6  |   |    |    |
| 3      |     |     |    | r3  |   |    |    |
| 4      | s5  | s4  |    |     |   | 8  | 7  |
| 5      |     |     | r5 | r5  |   |    |    |
| 6      | s12 | s11 |    |     |   | 10 | 9  |
| 7      |     |     | r4 | r4  |   |    |    |
| 8      |     |     | r6 | r6  |   |    |    |
| 9      |     |     |    | r2  |   |    |    |
| 10     |     |     |    | r6  |   |    |    |
| 11     | s12 | s11 |    |     |   | 10 | 13 |
| 12     |     |     |    | r5  |   |    |    |
| 13     |     |     |    | r4  |   |    |    |

### LALR Parsing

- LR(1) parsing tables have many states
- LALR parsing (Look-Ahead LR) merges two or more LR(1) state into one state to reduce table size
- Less powerful than LR(1)
  - Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
  - May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages