CS 4300: Compiler Theory

> Chapter 4
> Syntax Analysis

Dr. Xuejun Liang

Outlines (Sections)

1. Introduction
2. Context-Free Grammars
3. Writing a Grammar
4. Top-Down Parsing
5. Bottom-Up Parsing
6. Introduction to LR Parsing: Simple LR
7. More Powerful LR Parsers
8. Using Ambiguous Grammars
9. Parser Generators

Quick Review of Last Lecture

- LR Parsing
- Model of an LR Parser
- LR Parsing Driver
- Example LR(0) Parsing Table
- SLR: Simple extension of LR(0) shift-reduce parsing
- Reduction $\mathrm{A} \rightarrow \alpha$ on symbols in FOLLOW(A)
- SLR Parsing
- Construct SLR Parsing Table
- Moves of an SLR parser on input using SLR Parsing Table

SLR, Ambiguity, and Conflicts

- SLR grammars are unambiguous
- But not every unambiguous grammar is SLR
- Consider for example the unambiguous grammar

$$
\begin{array}{ll}
\text { 1. } S \rightarrow L=R & \text { 2. } S \rightarrow R \\
\text { 3. } L \rightarrow \rightarrow^{*} R & \text { 4. } L \rightarrow \text { id } \\
\text { 5. } R \rightarrow L &
\end{array}
$$

$I_{0}:$
$S^{\prime} \rightarrow \bullet S$
$S \rightarrow \bullet L=R$
$S \rightarrow \bullet R$
$L \rightarrow \bullet * R$
$L \rightarrow \bullet \mathbf{i d}$
$R \rightarrow \bullet L$

$\xlongequal{|$| $\\| I_{1}:$ |
| :--- |
| $S^{\prime} \rightarrow S^{\prime}$ |$}$

action $[2,=]=\mathrm{s} 6$
action $[2,=]=\mathrm{r} 5 \quad$ parsing table!

Viable Prefixes

- During the LR parsing, the stack contents must be a prefix of a right-sentential form
- If the stack holds α, the rest of input is x
- There is a right-most derivation $S \underset{r m}{\stackrel{*}{\Rightarrow}} \alpha x$
- But, not all prefixes of right-sentential forms can appear on the stack
- The parser must not shift past the handle
- Example: Suppose $E \underset{r m}{*} F * \mathbf{i d} \underset{r m}{\Rightarrow}(E) * \mathbf{i d}$ the stack must not hold $(E) *$, as (E) is a handle.
- The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes

Viable Prefixes (Cont.)

- A viable prefix is a prefix of a right-sentential form that does not continue past the right end of the leftmost handle of that sentential form
- We say item $\mathrm{A} \rightarrow \beta_{1} \bullet \beta_{2}$ is valid for a viable prefix $\alpha \beta_{1}$ if there is a derivation $S^{\prime} \underset{r m}{*} \alpha A w \underset{r m}{\Rightarrow} \alpha \beta_{1} \bullet \beta_{2} w$.
- $\mathrm{A} \rightarrow \beta_{1} \bullet \beta_{2}$ is valid for $\alpha \beta_{1}$ and $\alpha \beta_{1}$ is on the parsing stack
- If $\beta_{2} \neq \varepsilon$, then shift
- $\beta_{2}=\varepsilon$, then reduce

Viable Prefixes (Cont.)

- The set of valid items for a viable prefix δ is exactly the set of items reached from the initial state along the path labeled δ in the LR(0) automaton for the grammar
- Example: See state 7 of automaton on next slide.
$T \rightarrow \frac{T * \bullet}{\beta_{1}} \frac{F}{\beta_{2}} F \rightarrow \bullet(E)$, and $F \rightarrow \bullet$ id are valid items for viable prefix $\mathrm{E}+\mathrm{T} *$

$\begin{aligned} & E^{\prime} \underset{r m}{\Rightarrow} E \\ & \underset{r m}{\Rightarrow} E+T \\ & \underset{r m}{\Rightarrow} \frac{E}{\alpha}+\frac{T *}{\mathcal{B}_{1}} \frac{F}{\mathcal{B}_{2}} \end{aligned}$	$\begin{aligned} E^{\prime} & \underset{r m}{\Rightarrow} E \\ & \underset{r m}{\Rightarrow} E+T \\ & \underset{r m}{\Rightarrow} E+T * F \\ & \underset{r m}{\Rightarrow} \frac{E+T *}{\propto} \frac{(E)}{\rho_{2}} \end{aligned}$	$\begin{aligned} E^{\prime} & \underset{r m}{\Rightarrow} E \\ & \underset{r m}{\Rightarrow} E+T \\ & \Rightarrow=+T * F \\ & \underset{r m}{\Rightarrow} \frac{E+T *}{\alpha} \frac{\mathbf{i d}}{b_{2}} \end{aligned}$

LR(0)
 Automaton for expression

Grammar:
$E \rightarrow E+T \mid T$
$T \rightarrow T^{*} F \mid F$
$F \rightarrow(E)$
$F \rightarrow$ id
$T \rightarrow T * \bullet F$,
$F \rightarrow \bullet(E)$, and
$F \rightarrow$ oid
are valid items for viable prefix E+T*

7. LR(1) Grammars

- SLR too simple
- LR(1) parsing uses lookahead to avoid unnecessary conflicts in parsing table
- $\operatorname{LR}(1)$ item $=\operatorname{LR}(0)$ item + lookahead

$$
\begin{array}{cl}
\mathrm{LR}(0) \text { item: } & \text { LR }(1) \text { item: } \\
{[A \rightarrow \alpha \bullet \beta]} & {[A \rightarrow \alpha \bullet \beta, a]}
\end{array}
$$

SLR Versus LR(1)

- Split the SLR states by adding LR(1) lookahead
- Unambiguous grammar 1. $\quad S \rightarrow L=R$

2. $\quad S \rightarrow R$
3. $L \rightarrow^{*} R$
4. $L \rightarrow$ id
5. $R \rightarrow L$

Should not reduce on $=$, because no right-sentential form begins with $R=$

LR(1) Items

- An $L R(1)$ item

$$
[A \rightarrow \alpha \bullet \beta, a]
$$

contains a lookahead terminal a, meaning α already on top of the stack, expect to parse βa

- For items of the form

$$
[A \rightarrow \alpha \bullet, a]
$$

the lookahead a is used to reduce $A \rightarrow \alpha$ only if the next lookahead of the input is a

- For items of the form
$[A \rightarrow \alpha \bullet \beta, a]$
with $\beta \neq \varepsilon$ the lookahead has no effect

The Closure Operation for LR(1) Items

1. Start with closure $(I)=1$
2. If $[A \rightarrow \alpha \bullet B \beta, a] \in \operatorname{closure}(I)$ then for each production $B \rightarrow \gamma$ in the grammar and each terminal $b \in \operatorname{FIRST}(\beta a)$, add the item $[B \rightarrow \bullet \gamma, b]$ to closure(l) if not already in closure(I)
3. Repeat 2 until no new items can be added

The Goto Operation for LR(1) Items

1. For each item $[A \rightarrow \alpha \bullet X \beta, a] \in I$, add the set of items closure $(\{[A \rightarrow \alpha X \bullet \beta, a]\})$ to goto($(, X)$ if not already there
2. Repeat step 1 until no more items can be added to goto(I, X)

Constructing the set of LR(1) Items of a Grammar

1. Augment the grammar with a new start symbol S^{\prime} and production $S^{\prime} \rightarrow S$
2. Initially, set $C=\left\{\right.$ closure $\left.\left(\left\{\left[S^{\prime} \rightarrow \bullet S, \$\right]\right\}\right)\right\}$ (this is the start state of the DFA)
3. For each set of items $I \in C$ and each grammar symbol $X \in(N \cup T)$ such that goto $(I, X) \notin C$ and goto $(1, X) \neq \varnothing$, add the set of items goto($(, X)$ to C
4. Repeat 3 until no more sets can be added to C

Example Grammar and LR(1) Items

- Augmented LR(1) grammar (4.55):

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& S \rightarrow C C \\
& C \rightarrow C \mid d
\end{aligned}
$$

- LR (1) items

$$
I_{0}: \quad S \rightarrow \cdot S, \$
$$

$$
S \rightarrow \cdot C C, \$
$$

$$
C \rightarrow c C, c / d
$$

$$
C \rightarrow \cdot d, c / d
$$

$$
\begin{array}{llll}
I_{1}: & S^{\prime} \rightarrow S \cdot, \$ & I_{5}: & S \rightarrow C C \cdot, \$ \\
I_{2}: & S \rightarrow C \cdot C, \$ & I_{6}: & C \rightarrow c \cdot C, \$ \\
& C \rightarrow c C, \$ & & C \rightarrow c C, \$ \\
& C \rightarrow d, \$ & & C \rightarrow d, \$ \\
I_{3}: & C \rightarrow c \cdot C, c / d & I_{7}: & C \rightarrow d \cdot, \$ \\
& C \rightarrow c C, c / d \\
& C \rightarrow \cdot d, c / d & I_{8}: & C \rightarrow c C \cdot, c / d \\
I_{4}: & C \rightarrow d \cdot, c / d & I_{9}: & C \rightarrow c C \cdot, \$
\end{array}
$$

LR(1) items and goto Operation for Grammar (4.55)

$$
\begin{aligned}
& S^{\prime} \rightarrow S \\
& I_{0}: \begin{array}{llll}
S \rightarrow S, \$ \\
S \rightarrow C C, \$ & \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~S}\right)=\mathrm{I}_{1}
\end{array} \quad I_{4}: \quad C \rightarrow d \cdot, c / d \quad \begin{array}{l}
S \rightarrow C C \\
C \rightarrow \mathrm{CO} \mid \mathrm{d}
\end{array} \\
& I_{0}: \begin{array}{llll}
S \rightarrow S, \$ \\
S \rightarrow C C, \$ & \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~S}\right)=\mathrm{I}_{1}
\end{array} \quad I_{4}: \quad C \rightarrow d \cdot, c / d \quad \begin{array}{l}
S \rightarrow C C \\
C \rightarrow \mathrm{CO} \mid \mathrm{d}
\end{array} \\
& S \rightarrow \cdot C C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{C}\right)=\mathrm{I}_{2} \\
& I_{5}: \quad S \rightarrow C C \cdot, \$ \\
& I_{6}: \quad C \rightarrow c \cdot C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{C}\right)=\mathrm{I}_{9} \\
& C \rightarrow c C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{c}\right)=\mathrm{I}_{6} \\
& C \rightarrow \cdot d, \$ \quad \operatorname{goto}\left(\mathrm{I}_{6}, \mathrm{~d}\right)=\mathrm{I}_{7} \\
& I_{2}: \quad S \rightarrow C \cdot C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{C}\right)=\mathrm{I}_{5} \\
& C \rightarrow \cdot c C, \$ \quad \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{c}\right)=\mathrm{I}_{6} \\
& I_{7}: \quad C \rightarrow d, \$ \\
& C \rightarrow d, \$ \quad \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{~d}\right)=\mathrm{I}_{7} \\
& I_{8}: \quad C \rightarrow c C \cdot, c / d \\
& I_{3}: \quad C \rightarrow c \cdot C, c / d \quad \operatorname{goto}\left(\mathrm{I}_{3}, \mathrm{C}\right)=\mathrm{I}_{8} \\
& C \rightarrow \cdot c C, c / d \quad \operatorname{goto}\left(\mathrm{I}_{3}, \mathrm{c}\right)=\mathrm{I}_{3} \quad I_{9}: \quad C \rightarrow c C \cdot, \$
\end{aligned}
$$

Example Grammar and LR(1) Items

- Unambiguous LR(1) grammar:

$$
\begin{aligned}
& S \rightarrow L=R \\
& S \rightarrow R \\
& L \rightarrow{ }^{*} R \\
& L \rightarrow \text { id } \\
& R \rightarrow L
\end{aligned}
$$

- Augment with $S^{\prime} \rightarrow S$
- LR(1) items (next slide)

$$
\begin{aligned}
& I_{0}:\left[S^{\prime} \rightarrow \bullet S, \$\right] \quad \operatorname{goto}\left(I_{0}, S\right)=I_{1} \quad I_{6}:[S \rightarrow L=\bullet R, \$] \quad \operatorname{goto}\left(I_{6}, R\right)=I_{9} \\
& {[S \rightarrow \bullet L=R, \$] \quad \operatorname{goto}\left(I_{0}, L\right)=I_{2}} \\
& \operatorname{goto}\left(I_{0}, R\right)=I_{3} \\
& {[L \rightarrow \bullet * R,=] \quad \operatorname{goto}\left(I_{0}, *\right)=I_{4}} \\
& {[L \rightarrow \text { •id, }=] \quad \operatorname{goto}\left(I_{0}, \mathbf{i d}\right)=I_{5}} \\
& {[R \rightarrow \bullet L, \$]} \\
& I_{1}:\left[S^{\prime} \rightarrow S^{\bullet}, \$\right] \\
& I_{2}:[S \rightarrow L \cdot=R, \$] \quad \operatorname{goto}\left(I_{2},=\right)=I_{6} \\
& {[R \rightarrow L \bullet, \$]} \\
& I_{3}:[S \rightarrow R \bullet, \$] \\
& I_{4}:[L \rightarrow * \cdot R,=] \quad \operatorname{goto}\left(I_{4}, R\right)=I_{7} \\
& {[R \rightarrow \cdot L,=] \quad \operatorname{goto}\left(I_{4}, L\right)=I_{8}} \\
& {[L \rightarrow \bullet * R,=] \quad \operatorname{goto}\left(I_{4}, *\right)=I_{4}} \\
& {[L \rightarrow \cdot \mathbf{i d},=] \quad \operatorname{goto}\left(I_{4}, \mathbf{i d}\right)=I_{5}} \\
& I_{5}:[L \rightarrow \mathbf{i d} \cdot,=]
\end{aligned}
$$

Constructing Canonical LR(1) Parsing

 Tables1. Augment the grammar with $S^{\prime} \rightarrow S$
2. Construct the set $C=\left\{I_{0}, I_{1}, \ldots, I_{n}\right\}$ of $\operatorname{LR}(1)$ items
3. If $[A \rightarrow \alpha \bullet a \beta, b] \in I_{i}$ and goto $\left(I_{i}, a\right)=I_{j}$ then set action $[i, a]=$ shift j
4. If $[A \rightarrow \alpha \bullet, a] \in I_{i}$ then set action $[i, a]=$ reduce $A \rightarrow \alpha$ (apply only if $A \neq S^{\prime}$)
5. If $\left[S^{\prime} \rightarrow S \bullet, \$\right]$ is in I_{i} then set action $[i, \$]=$ accept
6. If goto $\left(I_{i}, A\right)=l_{j}$ then set goto $[i, A]=j$
7. Repeat 3-6 until no more entries added
8. The initial state i is the I_{i} holding item $\left[S^{\prime} \rightarrow \bullet S, \$\right]$

Example Canonical LR(1) Parsing Table

Grammar:
0. $\mathrm{S}^{\prime} \rightarrow S$

1. $S \rightarrow C C$
2. $C \rightarrow \boldsymbol{c} \mathrm{C}$
3. $C \rightarrow \boldsymbol{d}$

$\xrightarrow{c} \begin{gathered}I_{3} \\ C \rightarrow c \cdot C, c / d \\ C \rightarrow c C, c / d \\ C \rightarrow \cdot d, c / d\end{gathered} \xrightarrow{c} \xrightarrow{C} \xrightarrow{\substack{I_{8} \\ C \rightarrow c C \cdot, c / d}}$

STATE	ACTION		GOTO		
	c	d	$\$$	S	C
0	s 3	s 4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r 1		
6	s 6	s 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

Example LR(1) Parsing Table

Grammar:

1. S' $\rightarrow S$
2. $S \rightarrow L=R$
3. $S \rightarrow R$
4. $L \rightarrow$ * R
5. $L \rightarrow$ id
6. $R \rightarrow L$

	id	$*$	$=$	$\$$	S	L	R
1	s 5	s 4			1	2	3
2				acc			
3			s 6	r 6			
4	s 5	s 4				8	7
5			r 5	r 5			
6	s 12	s 11				10	9
7			r 4	r 4			
8			r 6	r 6			
9				r 2			
10				r 6			
11	s 12	s 11				10	13
12				r 5			
13				r 4			

LALR Parsing

- LR(1) parsing tables have many states
- LALR parsing (Look-Ahead LR) merges two or more LR(1) state into one state to reduce table size
- Less powerful than LR(1)
- Will not introduce shift-reduce conflicts, because shifts do not use lookaheads
- May introduce reduce-reduce conflicts, but seldom do so for grammars of programming languages

