CS 4300: Compiler Theory

Chapter 4 Syntax Analysis

Dr. Xuejun Liang

Quick Review of Last Lecture

- Design of a Lexical-Analyzer Generator
 - Construct and simulate an NFA from a Lex Program
 - Convert the NFA to a DFA and simulate the DFA
- From RE to DFA Directly
 - Simulate a DFA that recognizes L(r) given a regular expression r.
 - (Annotated) Syntax Tree of a regular expression
 - nullable(n)
 - firstpos(n)
 - lastpos(n)
 - followpos(p)
 - Algorithm: Construct Dstates, and Dtran

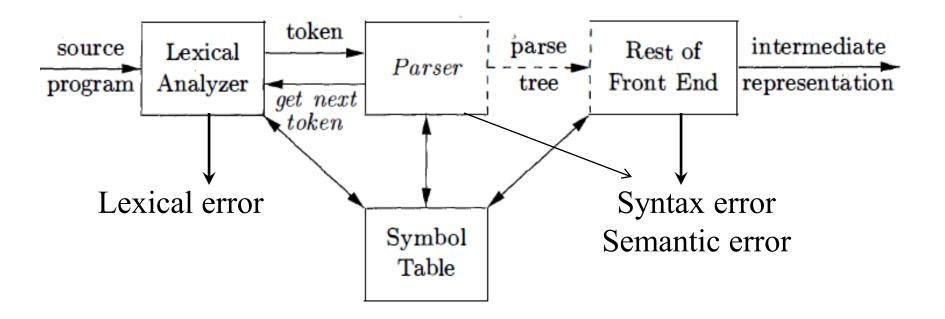
Outlines (Sections)

- 1. Introduction
- 2. Context-Free Grammars
- 3. Writing a Grammar
- 4. Top-Down Parsing
- 5. Bottom-Up Parsing
- 6. Introduction to LR Parsing: Simple LR
- 7. More Powerful LR Parsers
- 8. Using Ambiguous Grammars
- 9. Parser Generators

1. The role of the Parser

- A parser implements a Context-Free grammar as a recognizer of strings
- The role of the parser in a compiler is twofold:
 - To check syntax (= string recognizer)
 - And to report syntax errors accurately
 - To invoke semantic actions
 - For static semantics checking, e.g. type checking of expressions, functions, etc.
 - For syntax-directed translation of the source code to an intermediate representation

Position of Parser in Compiler Model



Error Handling

- A good compiler should be able to identify and locate errors and able to recover from errors
- Common programming errors can occur at many different levels
 - *Lexical errors*: important, compiler can easily recover and continue
 - *Syntax errors*: most important for compiler, can almost always recover
 - Static semantic errors: important, can sometimes recover
 - *Dynamic semantic errors*: hard or impossible to detect at compile time, runtime checks are required
 - *Logical errors*: hard or impossible to detect

Viable-Prefix Property

- The *viable-prefix property* of parsers allows early detection of syntax errors
 - Goal: detection of an error *as soon as possible* without further consuming unnecessary input
 - How: detect an error as soon as the prefix of the input does not match a prefix of any string in the language

...

Error Recovery Strategies

- Panic mode
 - Discard input until a token in a set of designated synchronizing tokens (such as ;) is found.
- Phrase-level recovery
 - Perform local correction on the input to repair the error
- Error productions
 - Augment grammar with productions for erroneous constructs
- Global correction
 - Choose a minimal sequence of changes to obtain a global least-cost correction

Representative Grammars (Expression)

LR grammar

- Suitable for bottom-up parsing.
- Not suitable for top-down parsing
 - Because it is left recursive

$$\begin{array}{ccccccccc} E & \rightarrow & E + T & | & T \\ T & \rightarrow & T & * F & | & F \\ F & \rightarrow & (E) & | & \mathbf{id} \end{array}$$

LL grammar

- Non-left-recursive
- Suitable for top-down parsing

$$\begin{array}{cccccccccc} E & \rightarrow & T & E' \\ E' & \rightarrow & + & T & E' & | & \epsilon \\ T & \rightarrow & F & T' \\ T' & \rightarrow & * & F & T' & | & \epsilon \end{array}$$

$$F \rightarrow (E) \mid \mathbf{id}$$

Ambiguous Grammar

 $E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$

2. Context-Free Grammars (Recap)

- Context-free grammar is a 4-tuple G = (N, T, P, S) where
 - T is a finite set of tokens (terminal symbols)
 - *N* is a finite set of *nonterminals*
 - *P* is a finite set of *productions* of the form $\alpha \rightarrow \beta$

where $\alpha \in (N \cup T)^* N (N \cup T)^*$ and $\beta \in (N \cup T)^*$

• *S* \in *N* is a designated *start symbol*

Notational Conventions

• Terminals

 $a,b,c,... \in T$ specific terminals: **0**, **1**, **id**, +

Nonterminals

 $A,B,C,... \in N$ specific nonterminals: *expr, term, stmt*

- Grammar symbols $X,Y,Z \in (N \cup T)$
- Strings of terminals $u, v, w, x, y, z \in T^*$
- Strings of grammar symbols $\alpha, \beta, \gamma \in (N \cup T)^*$

Derivations (Recap)

- The one-step derivation is defined by $\alpha A \beta \Rightarrow \alpha \gamma \beta$ where $A \rightarrow \gamma$ is a production in the grammar
- In addition, we define
 - \Rightarrow is *leftmost* \Rightarrow_{lm} if α does not contain a nonterminal
 - \Rightarrow is *rightmost* \Rightarrow_{rm} if β does not contain a nonterminal
 - Transitive closure \Rightarrow^* (zero or more steps)
 - Positive closure \Rightarrow^+ (one or more steps)
- The *language generated by G* is defined by $L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$

Derivation (Example)

Grammar $G = (\{E\}, \{+, *, (,), -, id\}, P, E)$ with productions P =

 $E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$

Example derivations:

 $E \Rightarrow - E \Rightarrow - \mathbf{id}$

 $E \Rightarrow_{rm} E + E \Rightarrow_{rm} E + \mathbf{id} \Rightarrow_{rm} \mathbf{id} + \mathbf{id}$ $E \Rightarrow^{*} E$ $E \Rightarrow^{*} \mathbf{id} + \mathbf{id}$ $E \Rightarrow^{+} \mathbf{id} + \mathbf{id}$

Language Classification

- A grammar G is said to be
 - *Regular* if it is *right linear* where each production is of the form

 $A \rightarrow w B \quad \text{or} \quad A \rightarrow w$ or *left linear* where each production is of the form $A \rightarrow B w \quad \text{or} \quad A \rightarrow w$

- Context free if each production is of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in (N \cup T)^*$
- Context sensitive if each production is of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$ where $A \in N$, $\alpha, \gamma, \beta \in (N \cup T)^*$, $|\gamma| > 0$
- Unrestricted

Chomsky Hierarchy

 $L(regular) \subset L(context free) \subset$ $L(context sensitive) \subset L(unrestricted)$

Where $L(T) = \{ L(G) \mid G \text{ is of type } T \}$ That is: the set of all languages generated by grammars *G* of type *T*

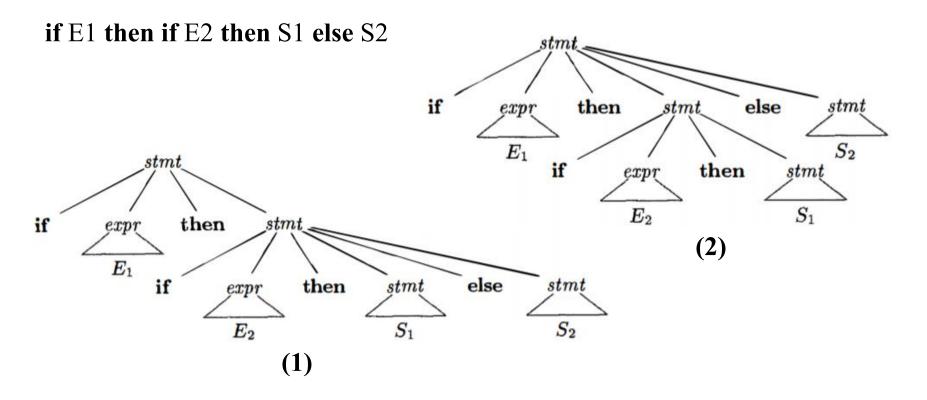
Every *finite language* is regular! (construct a FSA for strings in L(G)) $L_1 = \{ \mathbf{a}^n \mathbf{b}^n \mid n \ge 1 \}$ is context free, but not regular $L_2 = \{ \mathbf{wcw} \mid \mathbf{w} \text{ is in } L(\mathbf{a}|\mathbf{b})^* \}$ is context sensitive $L_3 = \{ \mathbf{a}^n \mathbf{b}^m \mathbf{c}^n \mathbf{d}^m \mid n \ge 1 \}$ is context sensitive

3. Lexical Versus Syntactic Analysis

- Why use regular expressions to define the lexical syntax of a language?
 - Quite simple, more concise and easier-to-understand
 - More efficient lexical analyzers can be constructed automatically from regular expressions
 - Regular expressions are most useful for describing the structure of constructs such as identifiers, constants, keywords, and white space.
 - Grammars are most useful for describing nested structures such as balanced parentheses, matching begin-end's, corresponding if-then-else's, and so on.

Eliminating Ambiguity (1)

Ambiguous grammar: "dangling else" $\begin{array}{rccc} stmt & \rightarrow & \textbf{if} \ expr \ \textbf{then} \ stmt \\ & | & \textbf{if} \ expr \ \textbf{then} \ stmt \ \textbf{else} \ stmt \\ & | & \textbf{other} \end{array}$



Eliminating Ambiguity (2)

Ambiguous grammar: "dangling else"

 $\begin{array}{rccc} stmt & \rightarrow & \mathbf{if} \; expr \; \mathbf{then} \; stmt \\ & | & \mathbf{if} \; expr \; \mathbf{then} \; stmt \; \mathbf{else} \; stmt \\ & | & \mathbf{other} \end{array}$

Unambiguous grammar for if-then-else statements

stmt	\rightarrow	$matched_stmt$
		$open_stmt$
$matched_stmt$	\rightarrow	${f if}\ expr{f then}\ matched_stmt{f else}\ matched_stmt$
		other
$open_stmt$	\rightarrow	$\mathbf{if} \ expr \ \mathbf{then} \ stmt$
		$\mathbf{if} \; expr \; \mathbf{then} \; matched_stmt \; \mathbf{else} \; open_stmt$

Eliminating Ambiguity (3)

if $\rm E1$ then if $\rm E2$ then $\rm S1$ else $\rm S2$

Stmt => open_stmt => if expr then stmt => if expr then matched_stmt => if expr then if expr then matched_stmt else matched _stmt =>* if E1 then if E2 then S1 else S2

Unambiguous grammar for if-then-else statements

stmt	\rightarrow	$matched_stmt$
		$open_stmt$
$matched_stmt$	\rightarrow	$\mathbf{if} \ expr \ \mathbf{then} \ matched_stmt \ \mathbf{else} \ matched_stmt \\$
		other
$open_stmt$	\rightarrow	$\mathbf{if} \ expr \ \mathbf{then} \ stmt$
		$\mathbf{if} \; expr \; \mathbf{then} \; matched_stmt \; \mathbf{else} \; open_stmt$

Left Recursion

- A grammar is **left recursive** if it has a nonterminal A such that there is a derivation $A \xrightarrow{+} A \alpha$ for some string α .
- When a grammar is left recursive then a predictive parser loops forever on certain inputs.
- Immediate left recursion, where there is a production of the form $A \rightarrow A \alpha$.

$$\begin{array}{ccc}
A \to A \alpha & & A \to \beta R \\
& | \beta & & | \gamma R \\
& | \gamma & & R \to \alpha R \\
& & | \varepsilon
\end{array}$$

Algorithm to eliminate left recursion

Input: Grammar G with no cycles or ε*-productions*

Arrange the nonterminals in some order $A_1, A_2, ..., A_n$ for i = 1, ..., n { for j = 1, ..., i-1 { replace each $A_i \rightarrow A_i \gamma$ with $A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \dots \mid \delta_k \gamma$ where $A_i \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_k$ } eliminate the *immediate left recursion* in A_i

}