
CS 4300: Compiler Theory

Chapter 3
Lexical Analysis

Dr. Xuejun Liang

Outlines (Sections)

1. The Role of the Lexical Analyzer

2. Input Buffering (Omit)

3. Specification of Tokens

4. Recognition of Tokens

5. The Lexical -Analyzer Generator Lex

6. Finite Automata

7. From Regular Expressions to Automata

8. Design of a Lexical-Analyzer Generator

9. Optimization of DFA-Based Pattern Matchers*

2

Quick Review of Last Lecture

• The Role of the Lexical Analyzer
• What a lexical analyzer (scanner) does?
• Tokens, Patterns, and Lexemes
• Attributes for Tokens

• Specification of Tokens
• String operations and language operations
• Regular expression, its operations, and examples
• Regular definitions, extensions, and examples

• Recognition of Tokens
• Patterns for tokens, lexemes, attribute values,
• Transition diagrams for each regular definition

4

5. Lexical-Analyzer Generator:
Lex and Flex

• Lex and its newer cousin flex are scanner
generators

• Scanner generators systematically translate regular
definitions into C source code for efficient scanning

• Generated code is easy to integrate in C
applications

5

Creating a Lexical Analyzer with
Lex and Flex

lex (or flex)

Lex source

program
lex.l

lex.yy.c

input

stream

C

compiler

a.out
sequence

of tokens

lex.yy.c

a.out

6

Structure of Lex Programs

• A Lex program consists of three parts:
declarations
%%
translation rules
%%
user-defined auxiliary procedures

• declarations
• C declarations in %{ %}
• regular definitions

• The translation rules are of the form:
pattern1 { action1 }
pattern2 { action2 }
…
patternn { actionn }

7

Regular Expressions in Lex
x match the character x

\. match the character .

“string” match contents of string of characters

. match any character except newline

^ match beginning of a line

$ match the end of a line

[xyz] match one character x, y, or z (use \ to escape -)

[^xyz]match any character except x, y, and z

[a-z] match one of a to z

r* closure (match zero or more occurrences)

r+ positive closure (match one or more occurrences)

r? optional (match zero or one occurrence)

r1r2 match r1 then r2 (concatenation)

r1|r2 match r1 or r2 (union)

(r) grouping

r1\r2 match r1 when followed by r2

{d} match the regular expression defined by d

8

Example Lex Specification 1

%{

#include <stdio.h>

%}

%%

[0-9]+ { printf(“%s\n”, yytext); }
.|\n { }

%%

main()

{ yylex();

}

Contains

the matching

lexeme

Invokes

the lexical

analyzer

lex spec.l

gcc lex.yy.c -ll

./a.out < spec.l

Translation

rules

9

Example Lex Specification 2

%{

#include <stdio.h>

int ch = 0, wd = 0, nl = 0;

%}

delim [\t]+

%%

\n { ch++; wd++; nl++; }

^{delim} { ch+=yyleng; }

{delim} { ch+=yyleng; wd++; }

. { ch++; }

%%

main()

{ yylex();

printf("%8d%8d%8d\n", nl, wd, ch);

}

Regular

definition
Translation

rules

10

Example Lex Specification 3

%{

#include <stdio.h>

%}

digit [0-9]

letter [A-Za-z]

id {letter}({letter}|{digit})*

%%

{digit}+ { printf(“number: %s\n”, yytext); }
{id} { printf(“ident: %s\n”, yytext); }
. { printf(“other: %s\n”, yytext); }
%%

main()

{ yylex();

}

Regular

definitions
Translation

rules

11

Lex Specification: Example 3.8
%{ /* definitions of manifest constants */

#define LT (256)

…

%}

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

%%

{ws} { }

if {return IF;}

then {return THEN;}

else {return ELSE;}

{id} {yylval = install_id(); return ID;}

{number} {yylval = install_num(); return NUMBER;}

“<“ {yylval = LT; return RELOP;}

“<=“ {yylval = LE; return RELOP;}

“=“ {yylval = EQ; return RELOP;}

“<>“ {yylval = NE; return RELOP;}

“>“ {yylval = GT; return RELOP;}

“>=“ {yylval = GE; return RELOP;}

%%

int install_id()

…

Return

token to

parser

Token

attribute

Install yytext as

identifier in symbol table

Conflict Resolution in Lex

• Two rules that Lex uses to decide on the proper
lexeme to select, when several prefixes of the input
match one or more patterns:

1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more
patterns, prefer the pattern listed first in the Lex
program.

12

13

6. Finite Automata

• Design of a Lexical Analyzer Generator
• Translate regular expressions to NFA

• Translate NFA to an efficient DFA

regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional

14

Nondeterministic Finite Automata

• An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states
 is a finite set of symbols, the alphabet
 is a transition function from S ({ɛ}) to a set
of states
s0 S is the start state
F S is the set of accepting (or final) states

15

Transition Graph

• An NFA can be diagrammatically represented by a
labeled directed graph called a transition graph

• Example
• an NFA recognizing the language of regular expression

(alb) * abb

0
start a

1 32
b b

a

b

S = {0,1,2,3}, = {a,b}, s0 = 0, F = {3}

16

Transition Table

• The mapping of an NFA can be represented in a
transition table

(0, a) = {0,1}

(0, b) = {0}

(1, b) = {2}

(2, b) = {3}

0
start a

1 32
b b

a

b

State Input a Input b Input ɛ

0 {0, 1} {0} ∅

1 ∅ {2} ∅

2 ∅ {3} ∅

3 ∅ ∅ ∅

17

The Language Defined by an NFA

• An NFA accepts an input string x if and only if there is some
path with edges labeled with symbols from x in sequence
from the start state to some accepting state in the
transition graph

• A state transition from one state to another on the path is
called a move

• The language defined by an NFA is the set of input strings it
accepts, such as (ab)*abb for the example NFA

0
start a

1 32
b b

a

b

18

Deterministic Finite Automata

• A deterministic finite automaton (DFA) is a special
case of NFA
• No state has an -transition

• For each state s and input symbol a there is exactly one
edge out of s labeled a

• Each entry in the transition table is a single state
• At most one path exists to accept a string

• Simulation algorithm is simple

Simulating a DFA

19

0
start a

1 32
b b

b
b

a

a

a

Example: A DFA that accepts (ab)*abb

