
CS 4300: Compiler Theory

Chapter 3
Lexical Analysis

Dr. Xuejun Liang

Outlines (Sections)

1. The Role of the Lexical Analyzer

2. Input Buffering (Omit)

3. Specification of Tokens

4. Recognition of Tokens

5. The Lexical -Analyzer Generator Lex

6. Finite Automata

7. From Regular Expressions to Automata

8. Design of a Lexical-Analyzer Generator

9. Optimization of DFA-Based Pattern Matchers*

2

1. The Role of the Lexical Analyzer

• As the first phase of a compiler, the main task of the
lexical analyzer is to read the input characters of the
source program, group them into lexemes, and
produce as output a sequence of tokens for each
lexeme in the source program.

3

4

Why Lexical Analysis and Parsing
(Syntax Analysis) are Separate

• Simplifies the design of the compiler
• LL(1) or LR(1) parsing with 1 token lookahead would not

be possible (multiple characters/tokens to match)

• Provides efficient implementation
• Systematic techniques to implement lexical analyzers

by hand or automatically from specifications

• Stream buffering methods to scan input

• Improves portability
• Non-standard symbols and alternate character

encodings can be normalized (e.g. UTF8, trigraphs)

5

Tokens, Patterns, and Lexemes

• A token is a pair consisting of a token name and an optional
attribute value
• The token name is an abstract symbol representing a kind of

lexical unit

• For example: id and num

• Lexemes are the specific character strings that make up a
token
• For example: abc and 123

• Patterns are rules describing the set of lexemes belonging
to a token
• For example: “letter followed by letters and digits” and “non-

empty sequence of digits”

Examples of Tokens

6

Token Classes:

1. One token for each keyword

2. Tokens for the operators

3. One token representing all identifiers

4. One or more tokens representing constants

5. Tokens for each punctuation symbol

Attributes for Tokens

• When more than one lexeme can match a pattern, the
lexical analyzer must provide the subsequent compiler
phases additional information about the particular lexeme
that matched.

• number

• We shall assume that tokens have at most one associated
attribute, although this attribute may have a structure that
combines several pieces of information
• E.g. id has its lexeme, its type, and the location at which it is

first found

• So the appropriate attribute value for an id is a pointer to
the symbol-table entry for that identifier (lexeme)

7

Example of Attributes for Tokens

• Example: lexemes, token names and associated attribute
values for the Fortran statement.

8

E = M * C ** 2

9

3. Specification of Patterns for
Tokens: Definitions
• An alphabet  is a finite set of symbols (characters)

• A string s is a finite sequence of symbols from 
• s denotes the length of string s

•  denotes the empty string, thus  = 0

• A language is a specific set of strings over some
fixed alphabet 

10

String Operations

• The concatenation of two strings x and y is
denoted by xy

• The exponentation of a string s is defined by

s0 = 
si = si-1s for i > 0

note that s = s = s

11

Language Operations

• Union
L M = {s  s  L or s  M}

• Concatenation
LM = {xy  x  L and y  M}

• Exponentiation
L0 = {}; Li = Li-1L

• Kleene closure
L* = i=0,…, Li

• Positive closure
L+ = i=1,…, Li

Example:

Compute

LD

LD

D4

D*

L(LD)*

D+

where

L = {A, B, ..., Z, a, b, ... , z}

and D = {0, 1, . . . 9}

12

Regular Expressions Over
Some Alphabet 

• Basis symbols:
•  is a regular expression denoting language {}

• a   is a regular expression denoting {a}

• If r and s are regular expressions denoting
languages L(r) and L(s) respectively, then
• rs is a regular expression denoting L(r)  L(s)

• rs is a regular expression denoting L(r) L(s)

• r* is a regular expression denoting (L(r))*

• (r) is a regular expression denoting L(r)

• A language defined by a regular expression is
called a regular set

Precedence of regular expression operations

13

a) The unary operator * has highest precedence and is left associative.
b) Concatenation has second highest precedence and is left associative
c) | has lowest precedence and is left associative

Algebraic laws for regular expression operations

14

Example 3.4 : Let  = {a, b}, what are languages denoted by

The following regular expressions:

a|b, (a|b)(a|b), a*, (a|b)*, a|a*b

15

Regular Definitions Over
Some Alphabet 

• Regular definitions introduce a naming convention
with name to regular expression bindings:

d1 → r1

d2 → r2
…
dn → rn

where:
• Each di is a new symbol, not in  and not the same as

any other of the d's, and

• each ri is a regular expression over
  {d1, d2, …, di-1 }

16

Regular Definitions: Examples

Numbers: 5280, 0.01234, 6.336E4, or 1.89E-4.

17

Regular Definitions: Extensions

• The following shorthands are often used:

• Examples:

One or more instances: + r+ = rr*

Zero or one instance: ? r? = r

Character classes: [a-z] = abc…z

18

4. Recognition of Tokens

Example 3.8: A Grammar for branching statements

The terminals of the grammar, which are if, then, else, relop ,

id, and number, are the names of tokens for lexical analyzer.

19

Patterns for tokens of Example 3.8

Tokens, patterns, and attribute values

20

whitespace

21

Transition Diagrams

0 21

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11*other

letter or digit

return(getToken(),

installID())

relop → <<=<>>>==

id → letter (letterdigit)*

22

Transition Diagrams (Cont.)

Whitespace

Unsigned number

23

Sketch of implementation
of relop transition diagram

