CS 4300: Compiler Theory

Chapter 2
A Simple Syntax-Directed
Translator

Dr. Xuejun Liang

Outline

* This chapter is an introduction to the compiling techniques
in Chapters 3 to 6 of the Dragon book

* |tillustrates the techniques by developing a working Java
program that translates representative programming
language statements into three-address code

* The major topics are

Syntax Definition

Syntax-Directed Translation

Parsing

A Translator for Simple Expressions
Lexical Analysis

Symbol Tables

Intermediate Code Generation

O N LA WD

3. Syntax-Directed Translation

Syntax-Directed Definition

e Uses a CF grammar to specify the syntactic structure of the
language

 AND associates a set of attributes with the terminals and

nonterminals of the grammar
* An attribute is any quantity associated with a programming
construct

* AND associates with each production a set of semantic rules
to compute values of attributes

* A parse tree is traversed and semantic rules applied: after
the tree traversal(s) are completed, the attribute values on
the nonterminals contain the translated form of the input

Synthesized and Inherited Attributes

 An attribute is said to be ...

* synthesized if its value at a parse-tree node is
determined from the attribute values at the
children of the node

* inherited if its value at a parse-tree node is
determined by the parent (by enforcing the parent’s
semantic rules)

Example Attribute Grammar

String concat operator

Production Semantic Rule /

expr — expr; +term exprt = expr.t| term.t| “+"
expr — expr, - term expr.t .= expr,.t|| term.t|| “-"
expr — term expr.t .= term.t

term —> 0 term.t :="0"

term —> 1 term.t:="1"

term — 9 term.t :="9”

Syntax-directed definition for infix to postfix translation

Example Annotated Parse Tree

expr.t = “95-<"
exprit = "“95-" term.t="2"
N
exprt="9" term.t ="5"
term.t="9"
9 - 5 + 2

Attribute values at nodes 1n a parse tree

expr.t ;= expr,.t| term.t| “+"

expr.t .= expr,.t|| term.t| -
expr.t .= term.t

term.t == “0"
term.t :="“1"
term.t :="“9”

Depth-First Traversals

procedure visit(n : node);
begin
for each child c of n, from left to right do
Visit(c);
evaluate semantic rules at node n
end

Figure 2.12: Example of a depth-first traversal of a tree

Depth-First Traversals (Example)

-

S ——
-~

-

V
~
~
~

,»”// 14 \;;‘\
exprt=_95-2+

PR RN

I ~
7 N
N

\ PN
‘term.t= "2

-
e

2 Note: all attributes are
of the synthesized type

8

Translation Schemes

* A translation scheme is a CF grammar embedded with
semantic actions by attaching program fragments to
productions in the grammar

rest — + term { print(“+") } rest

\. J
Y

Embedded rest

semantic acti% \

+ term {print("+7)} rest

An extra leaf 1s constructed for a semantic action

9

Example Translation Scheme
Grammar

11 7

expr — expr + term { print(+) }
expr — expr - term { print("-") }
expr — term

term —> 0 { print(“07) }
term —> 1 {print(“17) }
term — 9 { print(“97) }

Actions for translating infix into postfix notation

10

Example Translation Scheme
(Annotated) Parse Tree

yo T term { print(“+7) }

-,
-,
.,
.,
e
-~ ex
.,
Ve /
’ 5 - >
’, S~o T e e So
IR \ Sl
~
, P N SN e S~
7’ s ~ hES
. \ So ~<
\ ~o ~o
e A
~

\ \

//'eXfr - te‘r m_;{ print(“-")} 2 { print(“2”) }

“\fe?”?j 5 {print(“57) }

9 {print(“9”)}

Translates 9-5+2 into postfix 95-2+
11

4. Parsing

* Parsing = process of determining if a string of tokens
can be generated by a grammar

* For any CF grammar there is a parser that takes at most
O(n3) time to parse a string of n tokens

 Linear algorithms suffice for parsing programming
language source code

« Top-down parsing “constructs” a parse tree from root
to leaves

* Bottom-up parsing “constructs” a parse tree from
leaves to root

12

Top-Down Parsing

* The top-down construction of a parse tree is done by
starting with the root, labeled with the starting
nonterminal , and repeatedly performing the following
two steps.

1. At node N, labeled with nonterminal A, select one of
the productions for A and construct children at N for
the symbols in the production body.

2. Find the next node at which a subtree is to be

constructed, typically the leftmost unexpanded
nonterminal of the tree.

13

Top-Down Parsing Example

stmt — expr ;
| if (expr) stmt
for (optexpr ; optexpr ; optexpr) stmt

Grammar |
| other
optexpr — € | .
| expr nput string
for (; expr ; expr) other
// e N
ﬂpte:rpr i optexpr ﬂpte:rpr } ~ stmt
£ expr expr other

A parse tree according to the grammar

14

PARSE stmt
TREE *
(a)
INPUT ﬂir (; expr ; expr) other
PARSE st
TREE ///////7 — 7 I\ \\
optexpr ; opterpr ; oplecpr J stmt
(b)
INPUT f'-_'ir (; expr ; expr) other
PARSE stmd
we) N
i oplezpr ; opterpr opterpr) stmt
(c)
INPUT for (; expr ; expr) other

15

Predictive Parsing

* Recursive descent parsing is a top-down method of syntax
analysis in which a set of recursive procedures is used to
process the input.

* Each nonterminal has one (recursive) procedure that is
responsible for parsing the nonterminal’s syntactic category

of input tokens

* When a nonterminal has multiple productions, each
production is implemented in a branch of a selection
statement based on input look-ahead information

* Predictive parsing is a special form of recursive descent
parsing where we use one lookahead token to
unambiguously determine the parse operations

16

void stmtl) {
CASe expr:
match(expr); match(’;"); break;
case if:

match(if); match(’ ("); match(expr); match(")'); stmi();

break;
case for:
match(for); match('(");

optezpr(); match(’;"); optezpr(); match(';'); optezpr();
match(')'); stmt(); break;

case other;
match(other); brealk; stmt — expr ;

default: | if (expr) stmt |
| " " | for (optexpr ; optexpr ; optexpr) stmt
report("syntax error"); | other

}

} optexpr — €
| expr

void eptexpr() {
if (lookahead == expr) match{expr);
}

void match(terminal ¢) {
if (lookahead == t) lookahead = nextTerminal;
else report("syntax error");

17

FIRST Set

FIRST(a) 1s the set of terminals that appear as the first
symbols of one or more strings generated from a

stmt — expr ;
| if (expr) stmt
| for Coptexpr ; optexpr ; optexpr) stmt
| other

optexpr — €
| expr

FIRST(stmt) = { expr, if, for, other }
FIRST(expr) = {expr}
FIRST(for (optexpr ; optexpr ; optexpr) stmt) = {for}

18

How to use FIRST Set

We use FIRST to write a predictive parser as follows

procedure rest();
expr — term rest / begin

rest — + term rest if lookahead in FIRST(+ term rest) then
match(‘+); term(); rest()
else if lookahead in FIRST(- term rest) then

K: match(‘-"); term(); rest()
\ else return
end;

When a nonterminal A4 has two (or more) productions as in

| - term rest

A - a

P

Then FIRST (o) and FIRST(3) must be disjoint for

predictive parsing to work
19

Left Factoring

When more than one production for nonterminal A starts
with the same symbols, the FIRST sets are not disjoint

stmt — if expr then stmt endif
| if expr then stmt else stmt endif

We can use left factoring to fix the problem

stmt — if expr then stmt opt else
opt else — else stmt endif
| endif

20

Left Recursion

When a production for nonterminal A4 starts with a
self reference then a predictive parser loops forever

A—>A

| B
|y

We can eliminate left recursive productions by systematically
rewriting the grammar using right recursive productions

A—>PBR
| YR
R—>oR

| €
21

