
CS 4300: Compiler Theory

Chapter 2
A Simple Syntax-Directed

Translator

Dr. Xuejun Liang

2

Outline

• This chapter is an introduction to the compiling techniques
in Chapters 3 to 6 of the Dragon book

• It illustrates the techniques by developing a working Java
program that translates representative programming
language statements into three-address code

• The major topics are
2. Syntax Definition

3. Syntax-Directed Translation

4. Parsing

5. A Translator for Simple Expressions

6. Lexical Analysis

7. Symbol Tables

8. Intermediate Code Generation

3

3. Syntax-Directed Translation

Syntax-Directed Definition
• Uses a CF grammar to specify the syntactic structure of the

language
• AND associates a set of attributes with the terminals and

nonterminals of the grammar
• An attribute is any quantity associated with a programming

construct

• AND associates with each production a set of semantic rules
to compute values of attributes

• A parse tree is traversed and semantic rules applied: after
the tree traversal(s) are completed, the attribute values on
the nonterminals contain the translated form of the input

4

Synthesized and Inherited Attributes

• An attribute is said to be …
• synthesized if its value at a parse-tree node is

determined from the attribute values at the
children of the node

• inherited if its value at a parse-tree node is
determined by the parent (by enforcing the parent’s
semantic rules)

5

Example Attribute Grammar

expr → expr1 + term

expr → expr1 - term

expr → term

term → 0

term → 1

…

term → 9

expr.t := expr1.t || term.t || “+”
expr.t := expr1.t || term.t || “-”
expr.t := term.t

term.t := “0”
term.t := “1”
…

term.t := “9”

Production Semantic Rule

String concat operator

Syntax-directed definition for infix to postfix translation

6

Example Annotated Parse Tree

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Attribute values at nodes in a parse tree

expr.t := expr1.t || term.t || “+”
expr.t := expr1.t || term.t || “-”
expr.t := term.t

term.t := “0”
term.t := “1”
…

term.t := “9”

7

Depth-First Traversals

procedure visit(n : node);

begin

for each child c of n, from left to right do

visit(c);

evaluate semantic rules at node n

end

8

Depth-First Traversals (Example)

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Note: all attributes are

of the synthesized type

9

Translation Schemes

• A translation scheme is a CF grammar embedded with
semantic actions by attaching program fragments to
productions in the grammar

rest → + term { print(“+”) } rest

Embedded

semantic action
rest

term rest+ { print(“+”) }

An extra leaf is constructed for a semantic action

10

Example Translation Scheme
Grammar

expr → expr + term

expr → expr - term

expr → term

term → 0

term → 1

…

term → 9

{ print(“+”) }

{ print(“-”) }

{ print(“0”) }

{ print(“1”) }

…

{ print(“9”) }

Actions for translating infix into postfix notation

11

Example Translation Scheme
(Annotated) Parse Tree

expr

term

9

-

5

+

2

expr

expr term

term

{ print(“-”) }

{ print(“+”) }

{ print(“9”) }

{ print(“5”) }

{ print(“2”) }

Translates 9-5+2 into postfix 95-2+

12

4. Parsing

• Parsing = process of determining if a string of tokens
can be generated by a grammar

• For any CF grammar there is a parser that takes at most
O(n3) time to parse a string of n tokens

• Linear algorithms suffice for parsing programming
language source code

• Top-down parsing “constructs” a parse tree from root
to leaves

• Bottom-up parsing “constructs” a parse tree from
leaves to root

Top-Down Parsing

• The top-down construction of a parse tree is done by
starting with the root, labeled with the starting
nonterminal , and repeatedly performing the following
two steps.

1. At node N, labeled with nonterminal A, select one of
the productions for A and construct children at N for
the symbols in the production body.

2. Find the next node at which a subtree is to be
constructed, typically the leftmost unexpanded
nonterminal of the tree.

13

Top-Down Parsing Example

14

for (; expr ; expr) other

Grammar

Input string

A parse tree according to the grammar

15

16

Predictive Parsing

• Recursive descent parsing is a top-down method of syntax
analysis in which a set of recursive procedures is used to
process the input.
• Each nonterminal has one (recursive) procedure that is

responsible for parsing the nonterminal’s syntactic category
of input tokens

• When a nonterminal has multiple productions, each
production is implemented in a branch of a selection
statement based on input look-ahead information

• Predictive parsing is a special form of recursive descent
parsing where we use one lookahead token to
unambiguously determine the parse operations

17

18

FIRST Set

FIRST() is the set of terminals that appear as the first

symbols of one or more strings generated from 

FIRST(stmt) = { expr, if, for, other }

FIRST(expr) = {expr}

FIRST(for (optexpr ; optexpr ; optexpr) stmt) = {for}

19

How to use FIRST Set

expr → term rest

rest → + term rest

| - term rest

| 

A → 

| 

When a nonterminal A has two (or more) productions as in

Then FIRST () and FIRST() must be disjoint for

predictive parsing to work

procedure rest();

begin

if lookahead in FIRST(+ term rest) then

match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then

match(‘-’); term(); rest()

else return

end;

We use FIRST to write a predictive parser as follows

20

Left Factoring

When more than one production for nonterminal A starts

with the same symbols, the FIRST sets are not disjoint

We can use left factoring to fix the problem

stmt → if expr then stmt endif

| if expr then stmt else stmt endif

stmt → if expr then stmt opt_else

opt_else → else stmt endif

| endif

21

Left Recursion

When a production for nonterminal A starts with a

self reference then a predictive parser loops forever

A → A 

| 

| 

We can eliminate left recursive productions by systematically

rewriting the grammar using right recursive productions

A →  R

|  R

R →  R

| 

