
CS 4300: Compiler Theory

Chapter 2
A Simple Syntax-Directed

Translator

Dr. Xuejun Liang

2

Outline

• This chapter is an introduction to the compiling techniques
in Chapters 3 to 6 of the Dragon book

• It illustrates the techniques by developing a working Java
program that translates representative programming
language statements into three-address code

• The major topics are
2. Syntax Definition

3. Syntax-Directed Translation

4. Parsing

5. A Translator for Simple Expressions

6. Lexical Analysis

7. Symbol Tables

8. Intermediate Code Generation

3

3. Syntax-Directed Translation

Syntax-Directed Definition
• Uses a CF grammar to specify the syntactic structure of the

language
• AND associates a set of attributes with the terminals and

nonterminals of the grammar
• An attribute is any quantity associated with a programming

construct

• AND associates with each production a set of semantic rules
to compute values of attributes

• A parse tree is traversed and semantic rules applied: after
the tree traversal(s) are completed, the attribute values on
the nonterminals contain the translated form of the input

4

Synthesized and Inherited Attributes

• An attribute is said to be …
• synthesized if its value at a parse-tree node is

determined from the attribute values at the
children of the node

• inherited if its value at a parse-tree node is
determined by the parent (by enforcing the parent’s
semantic rules)

5

Example Attribute Grammar

expr → expr1 + term

expr → expr1 - term

expr → term

term → 0

term → 1

…

term → 9

expr.t := expr1.t || term.t || “+”
expr.t := expr1.t || term.t || “-”
expr.t := term.t

term.t := “0”
term.t := “1”
…

term.t := “9”

Production Semantic Rule

String concat operator

Syntax-directed definition for infix to postfix translation

6

Example Annotated Parse Tree

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Attribute values at nodes in a parse tree

expr.t := expr1.t || term.t || “+”
expr.t := expr1.t || term.t || “-”
expr.t := term.t

term.t := “0”
term.t := “1”
…

term.t := “9”

7

Depth-First Traversals

procedure visit(n : node);

begin

for each child c of n, from left to right do

visit(c);

evaluate semantic rules at node n

end

8

Depth-First Traversals (Example)

expr.t = “95-2+”

term.t = “2”

9 - 5 + 2

expr.t = “95-”

expr.t = “9” term.t = “5”

term.t = “9”

Note: all attributes are

of the synthesized type

9

Translation Schemes

• A translation scheme is a CF grammar embedded with
semantic actions by attaching program fragments to
productions in the grammar

rest → + term { print(“+”) } rest

Embedded

semantic action
rest

term rest+ { print(“+”) }

An extra leaf is constructed for a semantic action

10

Example Translation Scheme
Grammar

expr → expr + term

expr → expr - term

expr → term

term → 0

term → 1

…

term → 9

{ print(“+”) }

{ print(“-”) }

{ print(“0”) }

{ print(“1”) }

…

{ print(“9”) }

Actions for translating infix into postfix notation

11

Example Translation Scheme
(Annotated) Parse Tree

expr

term

9

-

5

+

2

expr

expr term

term

{ print(“-”) }

{ print(“+”) }

{ print(“9”) }

{ print(“5”) }

{ print(“2”) }

Translates 9-5+2 into postfix 95-2+

12

4. Parsing

• Parsing = process of determining if a string of tokens
can be generated by a grammar

• For any CF grammar there is a parser that takes at most
O(n3) time to parse a string of n tokens

• Linear algorithms suffice for parsing programming
language source code

• Top-down parsing “constructs” a parse tree from root
to leaves

• Bottom-up parsing “constructs” a parse tree from
leaves to root

Top-Down Parsing

• The top-down construction of a parse tree is done by
starting with the root, labeled with the starting
nonterminal , and repeatedly performing the following
two steps.

1. At node N, labeled with nonterminal A, select one of
the productions for A and construct children at N for
the symbols in the production body.

2. Find the next node at which a subtree is to be
constructed, typically the leftmost unexpanded
nonterminal of the tree.

13

Top-Down Parsing Example

14

for (; expr ; expr) other

Grammar

Input string

A parse tree according to the grammar

15

16

Predictive Parsing

• Recursive descent parsing is a top-down method of syntax
analysis in which a set of recursive procedures is used to
process the input.
• Each nonterminal has one (recursive) procedure that is

responsible for parsing the nonterminal’s syntactic category
of input tokens

• When a nonterminal has multiple productions, each
production is implemented in a branch of a selection
statement based on input look-ahead information

• Predictive parsing is a special form of recursive descent
parsing where we use one lookahead token to
unambiguously determine the parse operations

17

18

FIRST Set

FIRST() is the set of terminals that appear as the first

symbols of one or more strings generated from

FIRST(stmt) = { expr, if, for, other }

FIRST(expr) = {expr}

FIRST(for (optexpr ; optexpr ; optexpr) stmt) = {for}

19

How to use FIRST Set

expr → term rest

rest → + term rest

| - term rest

|

A →

|

When a nonterminal A has two (or more) productions as in

Then FIRST () and FIRST() must be disjoint for

predictive parsing to work

procedure rest();

begin

if lookahead in FIRST(+ term rest) then

match(‘+’); term(); rest()

else if lookahead in FIRST(- term rest) then

match(‘-’); term(); rest()

else return

end;

We use FIRST to write a predictive parser as follows

20

Left Factoring

When more than one production for nonterminal A starts

with the same symbols, the FIRST sets are not disjoint

We can use left factoring to fix the problem

stmt → if expr then stmt endif

| if expr then stmt else stmt endif

stmt → if expr then stmt opt_else

opt_else → else stmt endif

| endif

21

Left Recursion

When a production for nonterminal A starts with a

self reference then a predictive parser loops forever

A → A

|

|

We can eliminate left recursive productions by systematically

rewriting the grammar using right recursive productions

A → R

| R

R → R

|

