
CS 4300: Compiler Theory

Chapter 2
A Simple Syntax-Directed

Translator

Dr. Xuejun Liang

2

Outline

• This chapter is an introduction to the compiling techniques
in Chapters 3 to 6 of the Dragon book

• It illustrates the techniques by developing a working Java
program that translates representative programming
language statements into three-address code

• The major topics are
2. Syntax Definition

3. Syntax-Directed Translation

4. Parsing

5. A Translator for Simple Expressions

6. Lexical Analysis

7. Symbol Tables

8. Intermediate Code Generation

3

An Example Source Code

The Generated Intermediate Code

4

Compiler Front End

5

• For simplicity, the parser will use the syntax-directed

translation of infix expressions to postfix form.

• For example, the postfix form of the expression 9-5+2 is

95-2+

6

2. Syntax Definition

• Context-free grammar is a 4-tuple with
• A set of tokens (terminal symbols)

• A set of nonterminals

• A set of productions

• A designated start symbol

if (expression) statement else statement

An if-else statement in Java can have the form

This structuring rule can be expressed as

stmt → if (expr) stmt else stmt

The rule called

production, left

side called head,

and right side

called body

7

Example Grammar

list→ list + digit

list→ list - digit

list→ digit

digit→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

G = <{list, digit}, {+,-,0,1,2,3,4,5,6,7,8,9}, P, list>

with productions P =

Context-free grammar for simple expressions:

8

Derivation and Parsing

• A grammar derives strings (called derivation) by

• beginning with the start symbol and repeatedly

• replacing a nonterminal by the body of a production for

that nonterminal.

• The terminal strings that can be derived from the start

symbol form the language defined by the grammar

• Parsing is the problem of taking a string of terminals

and figuring out how to derive it from the start symbol

of the grammar, and if it cannot be derived from the

start symbol of the grammar, then reporting syntax

errors within the string.

9

Derivation Example

list

 list + digit

 list - digit + digit

 digit - digit + digit

 9 - digit + digit

 9 - 5 + digit

 9 - 5 + 2

• This is an example leftmost derivation, because we replaced

the leftmost nonterminal (underlined) in each step.

• Likewise, a rightmost derivation replaces the rightmost

nonterminal in each step

list→ list + digit

list→ list - digit

list→ digit

digit→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10

Parse Trees

• The root of the tree is labeled by the start symbol

• Each leaf of the tree is labeled by a terminal (token) or

• Each interior node is labeled by a nonterminal

• If A→ X1 X2 … Xn is a production, then node A has
immediate children X1, X2, …, Xn where Xi is a
(non)terminal or (denotes the empty string)

A

X1 X2 Xn…

11

Parse Tree Example

Parse tree of the string 9-5+2

using grammar G

The sequence of

leaves is called the

yield of the parse tree

list

digit

9 - 5 + 2

list

list digit

digit

list

 list + digit

 list - digit + digit

 digit - digit + digit

 9 - digit + digit

 9 - 5 + digit

 9 - 5 + 2

12

Ambiguity

string→ string + string | string - string | 0 | 1 | … | 9

G = <{string}, {+,-,0,1,2,3,4,5,6,7,8,9}, P, string>

with production P =

Consider the following context-free grammar:

This grammar is ambiguous, because more than one parse tree

represents the string 9-5+2

A grammar can have more than one parse tree

generating a given string of terminals. Such a

grammar is said to be ambiguous.

13

Two parse trees for 9-5+2

9-5+2 = (9-5)+2 9-5+2 = 9-(5+2)

14

Associativity of Operators

right→ letter = right | letter

left → left + digit | digit

Left-associative operators have left-recursive productions

Right-associative operators have right-recursive productions

String a=b=c has the same meaning as a=(b=c)

String 9+5+2 has the same meaning as (9+5)+2

Parse trees for left- and right-
associative grammars

15

9-5-2 is (9-5)-2 a=b=c is a=(b=c)

list→ list – digit | digit right→ letter = right | letter

16

Precedence of Operators

expr → expr + term | term

term→ term * factor | factor

factor→ digit | (expr)

Operators with higher precedence “bind more tightly”

String 2+3*5 has the same meaning as 2+(3*5)

expr

expr term

factor

+2 3 * 5

term

factor

term

factor

digit

digit

digit

17

Syntax (Grammar)

Subset of Java

Statements

Expressions

