
CS 4300: Compiler Theory

Chapter 1
Introduction

Dr. Xuejun Liang

Outlines

1. Language Processors

2. The Structure of a Compiler

3. The Evolution of Programming Languages

4. The Science of Building a Compiler

5. Applications of Compiler Technology

6. Programming Language Basics

2

1. Compilers and Interpreters
• Compilation

• Translation of a program
written in a source
language into a
semantically equivalent
program written in a target
language

Input

3

Compilers and Interpreters (cont)
• Interpretation

• Performing the operations implied by the source
program

4

Compilers and Interpreters (cont)

5

Language Preprocessing System

Preprocessor

Compiler

Assembler

Linker

Source Program

Modified Source Program

Target Assembly Program

Relocatable Object Code

Absolute Machine Code

Libraries and

Relocatable Object Files

Try for example:
gcc -S myprog.c

6

2. The Structure of a Compiler

• Lexical Analysis

• Parsing (Syntax Analysis)

• Semantic Analysis

• Optimization

• Code Generation

The first 3, at least, can be understood by analogy to
how humans comprehend English.

7

Analysis and Synthesis

• There are two parts to compilation:
• Analysis breaks up the source program into constituent

pieces and imposes a grammatical structure on them. It
then uses this structure to create an intermediate
representation of the source program.
• The analysis part also collects information about the source

program and stores it in a data structure called a symbol table

• Synthesis constructs the desired target program from
the intermediate representation and the information in
the symbol table

8

9

The Phases of
a Compiler

10

position = initial + rate * 60

Example

Optimization Phase:

Automatically modify programs

so that they

– Run faster

– Use less memory

– In general, conserve some resource

– Preserve correctness

The Grouping of Phases

• Compiler front and back ends:
• Front end: analysis (machine independent)

• Back end: synthesis (machine dependent)

• Compiler passes:
• A collection of phases is done only once (single pass) or

multiple times (multi pass)
• Single pass: usually requires everything to be defined before

being used in source program

• Multi pass: compiler may have to keep entire program
representation in memory

11

Compiler-Construction Tools

• Software development tools are available to
implement one or more compiler phases
• Scanner generators

• Parser generators

• Syntax-directed translation engines

• Code-generator generators

• Data-flow analysis engines

• Compiler- construction toolkits

12

5. Applications of Compiler
Technology

• Implementation of High-Level Programming
Languages

• Optimizations for Computer Architectures

• Design of New Computer Architectures

• Program Translations

• Software Productivity Tools

13

Other Tools that Use the Analysis-
Synthesis Model

• Editors (syntax highlighting)

• Pretty printers (e.g. Doxygen)

• Static checkers (e.g. Lint and Splint)

• Interpreters

• Text formatters (e.g. TeX and LaTeX)

• Silicon compilers (e.g. VHDL)

• Query interpreters/compilers (Databases)

14

Why Study Compilers

• Increase capacity of expression

• Improve understanding of program behavior

• Increase ability to learn new languages

• Learn to build a large and reliable system

• See many basic CS concepts at work

15

6. Programming Language Basics

• The Static/Dynamic Distinction

• Environments and States

• Static Scope and Block Structure

• Explicit Access Control

• Dynamic Scope

• Parameter Passing Mechanisms

• Aliasing

16

Static Verse Dynamic Scope

• The scope of a declaration of x is the region of the
program in which uses of x refer to this declaration

• A language uses static scope or lexical scope if it is
possible to determine the scope of a declaration by
looking only at the program. Otherwise, the
language uses dynamic scope

• With dynamic scope, as the program runs, the
same use of x could refer to any of several different
declarations of x

17

Environments and States
• The environment is a mapping from names to

locations in the store

• The state is a mapping from locations in store to
their values

18

Block Structure Example

19

12 BB

23 BB

24 BB

20

Static Scope and Block Structure

21

The static-scope rule for variable declarations in a block

structured languages is as follows. If declaration D of name x

belongs to block B, then the scope of D is all of B, except for

any blocks B' nested to any depth within B, in which x is

redeclared

22

a = 3;

b = 4;

Dynamic Scope

• Dynamic Scope
• A use of a name x refers to the declaration of x in the

most recently called, not yet terminated, procedure
with such a declaration

• Analogy Between Static and Dynamic Scoping
• The dynamic rule is to time as the static rule is to space.

• While the static rule asks us to find the declaration
whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the
declaration whose unit (procedure invocation) most
closely surrounds the time of the use

23

Dynamic Scope: two cases

• Macro expansion in the C preprocessor

• Method resolution in object-oriented
programming
• There is a class A with a method named m() .

• B is a subclass of A, and B has its own method named m().

• There is a use of m of the form x.m(), where x is an object of
class A.

24

Polymorphism

Overriding

Virtual method

C++ Method (Function) Overriding

25

#include <iostream>
using namespace std;

class A {
public: void m() {

cout << "This is A!" << endl;
}

};

class B : public A {
public: void m() {

cout << "This is B!" << endl;
}

};

int main(){
A* s1 = new A;
s1 -> m();

A* s2 = new B;
s2 -> m();

return 0;
}

C++ Virtual Method (Function)

26

int main(){
A* s1 = new A;
s1 -> m();

A* s2 = new B;
s2 -> m();

return 0;
}

#include <iostream>
using namespace std;

class A {
public: virtual void m() {

cout << "This is A!" << endl;
}

};

class B : public A {
public: virtual void m() {

cout << "This is B!" << endl;
}

};

Java Method (Function) Overriding

27

class A {
public void m() { System.out.println("This is A!"); }

}

class B extends A {
public void m() { System.out.println("This is B!"); }

}

class Override {
public static void main(String[] args) {
A s1 = new A();
s1.m();

A s2 = new B();
s2.m();

}
}

Parameter Passing Mechanisms

• Call-by-value
• the actual parameter is evaluated (if it is an expression) or

copied (if it is a variable). The value is placed in the location
belonging to the corresponding formal parameter of the
called procedure

• Call-by-reference
• the address of the actual parameter is passed to the callee

as the value of the corresponding formal parameter

• Java uses call-by-value exclusively. But, anything other than
a basic type such as an integer or real is a pointer to the
actual object. Thus, the called procedure is able to affect
the value of the object itself (except the basic type).

28

