
Chapter 4
MARIE: An 
Introduction 

to a Simple Computer



Objectives

• Learn the components common to every 
modern computer system.

• Be able to explain how each component 
contributes to program execution.

• Understand a simple architecture invented to 
illuminate these basic concepts, and how it 
relates to some real architectures.

• Know how the program assembly process 
works.



4.1 Introduction

• Chapter 1 presented a general overview of 
computer systems.

• In Chapter 2, we discussed how data is stored and 
manipulated by various computer system 
components.

• Chapter 3 described the fundamental components 
of digital circuits.

• Having this background, we can now understand 
how computer components work, and how they fit 
together to create useful computer systems.



4.2 CPU Basics (1 of 2)

• The computer’s CPU fetches, decodes, and 
executes program instructions.

• The two principal parts of the CPU are the 
datapath and the control unit.
– The datapath consists of an arithmetic-logic unit 

and storage units (registers) that are 
interconnected by a data bus that is also 
connected to main memory.  

– Various CPU components perform sequenced 
operations according to signals provided by its 
control unit.



4.2 CPU Basics (2 of 2)

• Registers hold data that can be readily 
accessed by the CPU.

• They can be implemented using D flip-flops.
– A 32-bit register requires 32 D flip-flops.

• The arithmetic-logic unit (ALU) carries out 
logical and arithmetic operations as directed 
by the control unit.

• The control unit determines which actions to 
carry out according to the values in a program 
counter register and a status register.



4.3 The Bus (1 of 5)

• The CPU shares data with other system 
components by way of a data bus.
– A bus is a set of wires that simultaneously convey 

a single bit along each line.

• Two types of buses are commonly found in 
computer systems: point-to-point, and 
multipoint buses.

These are 

point-to-point buses: 



4.3 The Bus (2 of 5)

• Buses consist of data lines, control lines, 
and address lines.

• While the data lines convey bits from one 
device to another, control lines determine 
the direction of data flow, and when each 
device can access the bus.

• Address lines determine the location of the 
source or destination of the data.

The next slide shows a model bus configuration. 



4.3 The Bus (3 of 5)



4.3 The Bus (4 of 5)

• A multipoint bus is shown below.

• Because a multipoint bus is a shared 
resource, access to it is controlled through 
protocols, which are built into the 
hardware. 



4.3 The Bus (5 of 5)

• In a master-slave configuration, where more than one 
device can be the bus master, concurrent bus master 
requests must be arbitrated.

• Four categories of bus arbitration are:
– Daisy chain: Permissions are passed from the highest-priority 

device to the lowest.
– Centralized parallel: Each device is directly connected to an 

arbitration circuit.
– Distributed using self-detection: Devices decide which gets the 

bus among themselves.
– Distributed using collision-detection: Any device can try to use 

the bus. If its data collides with the data of another device, it tries 
again.



4.4 Clocks (1 of 2)

• Every computer contains at least one clock that 
synchronizes the activities of its components.

• A fixed number of clock cycles are required to carry 
out each data movement or computational 
operation.

• The clock frequency, measured in megahertz or 
gigahertz, determines the speed with which all 
operations are carried out.

• Clock cycle time is the reciprocal of clock frequency.
– An 800 MHz clock has a cycle time of 1.25 ns.



4.4 Clocks (2 of 2)

• Clock speed should not be confused with CPU 
performance.

• The CPU time required to run a program is given by 
the general performance equation:

– We see that we can improve CPU throughput when we 
reduce the number of instructions in a program, 
reduce the number of cycles per instruction, or reduce 
the number of nanoseconds per clock cycle.

We will return to this important equation in later chapters.



4.5 The Input/Output Subsystem

• A computer communicates with the outside world 
through its input/output (I/O) subsystem.

• I/O devices connect to the CPU through various 
interfaces.

• I/O can be memory-mapped—where the I/O device 
behaves like main memory from the CPU’s point of 
view.

• Or I/O can be instruction-based, where the CPU has 
a specialized I/O instruction set.

We study I/O in detail in chapter 7.



4.6 Memory Organization (1 of 8)

• Computer memory consists of a linear array of 
addressable storage cells that are similar to 
registers.

• Memory can be byte-addressable, or word-
addressable, where a word typically consists of two 
or more bytes.

• Memory is constructed of RAM chips, often 
referred to in terms of length  width.

• If the memory word size of the machine is 16 bits, 
then a 4M  16 RAM chip gives us 4 mega 16-bit 
memory locations.



• How does the computer access a memory location 
corresponds to a particular address?

• We observe that 4M can be expressed as 22  220 = 
222 words.

• The memory locations for this memory are numbered 
0 through 222 – 1.

• Thus, the memory bus of this system requires at least 
22 address lines.
– The address lines “count” from 0 to 222 – 1 in binary. 

Each line is either “on” or “off” indicating the location 
of the desired memory element.

4.6 Memory Organization (2 of 8)



4.6 Memory Organization (3 of 8)

• Physical memory usually consists of more than one 
RAM chip.

• Access is more efficient when memory is organized 
into banks of chips with the addresses interleaved 
across the chips

• With low-order interleaving, the low order bits of 
the address specify which memory bank contains 
the address of interest.

• Accordingly, in high-order interleaving, the high 
order address bits specify the memory bank.

The next two slides illustrate these two ideas.



4.6 Memory Organization (4 of 8)

• Example: Suppose we have a 
memory consisting of 16 2K x 
8 bit chips.

– Memory is 32K = 25  210 = 215

– 15 bits are needed for each 
address.

– We need 4 bits to select the 
chip, and 11 bits for the offset 
into the chip that selects the 
byte.



4.6 Memory Organization (5 of 8)

• In high-order interleaving the high-order 4 
bits select the chip.

• In low-order interleaving the low-order 4 
bits select the chip.



4.6 Memory Organization (6 of 8)



4.6 Memory Organization (7 of 8)



• EXAMPLE 4.1: Suppose we have a 128-word memory 
that is 8-way low-order interleaved

– which means it uses 8 memory banks; 8 = 23

• So we use the low-order 3 bits to identify the bank. 

• Because we have 128 words, we need 7 bits for each 
address (128 = 27).

4.6 Memory Organization (8 of 8)



4.7 Interrupts

• The normal execution of a program is altered when 
an event of higher-priority occurs. The CPU is 
alerted to such an event through an interrupt.

• Interrupts can be triggered by I/O requests, 
arithmetic errors (such as division by zero), or when 
an invalid instruction is encountered.

• Each interrupt is associated with a procedure that 
directs the actions of the CPU when an interrupt 
occurs. 
– Nonmaskable interrupts are high-priority interrupts 

that cannot be ignored.



4.8 MARIE (1 of 14)

• We can now bring together many of the ideas that 
we have discussed to this point using a very simple 
model computer.

• Our model computer, the Machine Architecture 
that is Really Intuitive and Easy (MARIE) was 
designed for the singular purpose of illustrating 
basic computer system concepts.

• While this system is too simple to do anything 
useful in the real world, a deep understanding of its 
functions will enable you to comprehend system 
architectures that are much more complex.



4.8 MARIE (2 of 14)

• The MARIE architecture has the following 
characteristics:
– Binary, two's complement data representation.
– Stored program, fixed word length data and 

instructions.
– 4K words of word-addressable main memory.
– 16-bit data words.
– 16-bit instructions, 4 for the opcode and 12 for the 

address.
– A 16-bit arithmetic logic unit (ALU).
– Seven registers for control and data movement.



4.8 MARIE (3 of 14)

• MARIE’s seven registers are:
– (1) Accumulator, AC, a 16-bit register that holds a 

conditional operator (e.g., "less than") or one 
operand of a two-operand instruction.

– (2) Memory address register, MAR, a 12-bit 
register that holds the memory address of an 
instruction or the operand of an instruction.  

– (3) Memory buffer register, MBR, a 16-bit register 
that holds the data after its retrieval from, or 
before its placement in memory.



4.8 MARIE (4 of 14)

– (4) Program counter, PC, a 12-bit register that 
holds the address of the next program instruction 
to be executed.

– (5) Instruction register, IR, which holds an 
instruction immediately preceding its execution.

– (6) Input register, InREG, an 8-bit register that 
holds data read from an input device.

– (7) Output register, OutREG, an 8-bit register, that 
holds data that is ready for the output device.



4.8 MARIE (5 of 14)

• This is the MARIE architecture shown 
graphically.



4.8 MARIE (6 of 14)

• The registers are interconnected, and connected 
with main memory through a common data bus.

• Each device on the bus is identified by a unique 
number that is set on the control lines whenever 
that device is required to carry out an operation.

• Separate connections are also provided between 
the accumulator and the memory buffer register, 
and the ALU and the accumulator and memory 
buffer register.

• This permits data transfer between these devices 
without use of the main data bus.



4.8 MARIE (7 of 14)

• This is the MARIE 
data path shown 
graphically.



4.8 MARIE (8 of 14)

• A computer’s instruction set architecture (ISA) 
specifies the format of its instructions and the 
primitive operations that the machine can 
perform.

• The ISA is an interface between a computer’s 
hardware and its software.

• Some ISAs include hundreds of different 
instructions for processing data and 
controlling program execution.

• The MARIE ISA consists of only 13 instructions.



4.8 MARIE (9 of 14)

• This is the format of a MARIE instruction:

• The fundamental MARIE instructions are:



4.8 MARIE (10 of 14)

• This is a bit pattern for a LOAD instruction 
as it would appear in the IR:

• We see that the opcode is 1 and the 
address from which to load the data is 3.



• This is a bit pattern for a SKIPCOND instruction as 
it would appear in the IR:

• We see that the opcode is 8 and bits 11 and 10 are 
10, meaning that the next instruction will be 
skipped if the value in the AC is greater than zero.

4.8 MARIE (11 of 14)

What is the hexadecimal representation of this instruction?



4.8 MARIE (12 of 14)

• Each of our instructions actually consists of a 
sequence of smaller instructions called 
microoperations.

• The exact sequence of microoperations that are 
carried out by an instruction can be specified using 
register transfer language (RTL).

• In the MARIE RTL, we use the notation M[X] to 
indicate the actual data value stored in memory 
location X, and  to indicate the transfer of bytes 
to a register or memory location.



4.8 MARIE (13 of 14)

• The RTL for the LOAD instruction is:

• Similarly, the RTL for the ADD instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR

MAR  X

MBR  M[MAR] 

AC  MBR



4.8 MARIE (14 of 14)

• Recall that SKIPCOND skips the next 
instruction according to the value of the AC.

• The RTL for this instruction is the most 
complex in our instruction set:

If IR[11 - 10] = 00 then

If AC < 0 then PC  PC + 1

else If IR[11 - 10] = 01 then

If AC = 0 then PC  PC + 1

else If IR[11 - 10] = 10 then

If AC > 0 then PC  PC + 1



4.9 Instruction Processing (1 of 7)

• The fetch-decode-execute cycle is the series of steps 
that a computer carries out when it runs a program.

• We first have to fetch an instruction from memory, 
and place it into the IR.

• Once in the IR, it is decoded to determine what 
needs to be done next.

• If a memory value (operand) is involved in the 
operation, it is retrieved and placed into the MBR.

• With everything in place, the instruction is 
executed.

The next slide shows a flowchart of this process.



4.9 Instruction Processing (2 of 7)



4.9 Instruction Processing (3 of 7)

• All computers provide a way of interrupting the 
fetch-decode-execute cycle.

• Interrupts are asynchronous and indicate some 
type of service is required.

• Interrupts occur when:
– A user break (e.g., Control+C) is issued
– I/O is requested by the user or a program
– A critical error occurs

• Interrupts can be caused by hardware or software.
– Software interrupts are also called traps.



4.9 Instruction Processing (4 of 7)

• Interrupt processing involves adding 
another step to the fetch-decode-execute 
cycle as shown below.

The next slide shows a flowchart of “Process the interrupt.”



4.9 Instruction Processing (5 of 7)



4.9 Instruction Processing (6 of 7)

• For general-purpose systems, it is common to 
disable all interrupts during the time in which 
an interrupt is being processed.
– Typically, this is achieved by setting a bit in the 

flags register.

• Interrupts that are ignored in this case are 
called maskable.

• Nonmaskable interrupts are those interrupts 
that must be processed in order to keep the 
system in a stable condition.



4.9 Instruction Processing (7 of 7)

• Interrupts are very useful in processing I/O.

• However, interrupt-driven I/O is complicated, and is 
beyond the scope of our present discussion.

– We will look into this idea in greater detail in Chapter 7.

• MARIE, being the simplest of simple systems, uses a 
modified form of programmed I/O. 

• All output is placed in an output register (OutREG) 
and the CPU polls the input register (InREG) until 
input is sensed, at which time the value is copied into 
the accumulator.



4.10 A Simple Program (1 of 3)

• Consider the simple MARIE program given 
below.  We show a set of mnemonic 
instructions stored at addresses 0x100 –
0x106 (hex):



4.10 A Simple Program (2 of 3)

• Let’s look at what happens inside the 
computer when our program runs.

• This is the LOAD 104 instruction:



4.10 A Simple Program (3 of 3)

• Our second instruction is ADD 105:



4.11 A Discussion on Assemblers (1 of 4)

• Mnemonic instructions, such as LOAD 104, are 
easy for humans to write and understand.

• They are impossible for computers to understand.
• Assemblers translate instructions that are 

comprehensible to humans into the machine 
language that is comprehensible to computers
– We note the distinction between an assembler and a 

compiler: In assembly language, there is a one-to-one 
correspondence between a mnemonic instruction and 
its machine code. With compilers, this is not usually 
the case.



4.11 A Discussion on Assemblers (2 of 4)

• Assemblers create an object program file from 
mnemonic source code in two passes.

• During the first pass, the assembler assembles 
as much of the program as it can, while it 
builds a symbol table that contains memory 
references for all symbols in the program.

• During the second pass, the instructions are 
completed using the values from the symbol 
table.



4.11 A Discussion on Assemblers (3 of 4)

• Consider our example 
program at the right. 
– Note that we have 

included two 
directives HEX and 
DEC that specify the 
radix of the 
constants.

• The first pass, creates 
a symbol table and 
the partially-
assembled 
instructions as shown.



4.11 A Discussion on Assemblers (4 of 4)

• After the second pass, the assembly is 
complete. 



4.12 Extending Our Instruction Set 
(1 of 6)

• So far, all of the MARIE instructions that we 
have discussed use a direct addressing mode.

• This means that the address of the operand is 
explicitly stated in the instruction. 

• It is often useful to employ a indirect 
addressing, where the address of the address 
of the operand is given in the instruction.
– If you have ever used pointers in a program, you 

are already familiar with indirect addressing.



4.12 Extending Our Instruction Set 
(2 of 6)

• We have included three indirect addressing mode instructions 
in the MARIE instruction set. 

• The first two are LOADI X and STOREI X where specifies 
the address of the operand to be loaded or stored. 

• In RTL : 

STOREI XLOADI X 



4.12 Extending Our Instruction Set 
(3 of 6)

• The ADDI X where specifies the address of 
the operand to be added.

• In RTL: 

ADDI X



4.12 Extending Our Instruction Set 
(4 of 6)

• Another helpful programming tool is the use of subroutines. 
• The jump-and-store instruction, JNS, gives us limited 

subroutine functionality. The details of the JNS instruction are 
given by the following RTL: 

Does JNS permit 

recursive calls? 
PC  ← AC



4.12 Extending Our Instruction Set 
(5 of 6)

• Our first new instruction is the CLEAR
instruction.

• All it does is set the contents of the 
accumulator to all zeroes.

• This is the RTL for CLEAR:

• We put our new instructions to work in the 
program on the following slide.

AC  0



100 | LOAD Addr

101 | STORE Next

102 | LOAD Num

103 | SUBT One        

104 | STORE Ctr

105 |Loop  LOAD Sum  

106 | ADDI Next

107 | STORE Sum       

108 | LOAD Next       

109 | ADD One

10A | STORE Next      

10B | LOAD Ctr  

10C | SUBT One

10D | STORE Ctr

10E | SKIPCOND 000

10F | JUMP Loop

110 | HALT

111 |Addr  HEX 117

112 |Next  HEX 0

113 |Num   DEC 5

114 |Sum   DEC 0

115 |Ctr   HEX 0

116 |One   DEC 1

117 | DEC 10

118 | DEC 15

119 | DEC 2

11A | DEC 25

11B | DEC 30

4.12 Extending Our Instruction Set (6 of 6)

20

Example 4.2 on the textbook and Ex4_1.mas in the MARIE 

simulator package: Using loop to add five numbers.



MARIE Assembly Program: Example 4.3

ORG 100

If, Load X /Load the first value

Subt Y /Subtract the value of Y, store result in AC

Skipcond 400 /If AC=0, skip the next instruction

Jump Else /Jump to Else part if AC is not equal to 0

Then, Load X /Reload X so it can be doubled

Add X /Double X

Store X /Store the new value

Jump Endif /Skip over the false, or else, part to end of if

Else, Load Y /Start the else part by loading Y

Subt X /Subtract X from Y

Store Y /Store Y-X in Y

Endif, Halt /Terminate program (it doesn't do much!)

X, Dec 12 /Load the loop control variable

Y, Dec 20 /Subtract one from the loop control variable

END

Ex4_2.mas in the MARIE simulator package
If X = Y then

X = X × 2

else

Y = Y - X



MARIE Assembly Program: Example 4.4

/ This program traverses a string and outputs each 

/ character. The string is terminated with a null.

/ Note: By changing the output window control setting

/ to "no linefeeds" the text will print in a single

/ line, rather than in a column of single characters.

ORG 100

Getch, LoadI Chptr / Load the character found at address chptr.

Skipcond 400 / If the character is a null, we are done.

Jump Outp / Otherwise, proceed with operation.

Halt

Ex4_3.mas in the MARIE simulator package



MARIE Assembly Program: Example 4.4

Outp, Output / Output the character.
Load Chptr / Move pointer to next character.
Add One
Store Chptr
Jump Getch

One, Hex 0001
Chptr, Hex 10B
String, Dec 072  / H

Dec 101  / e
Dec 108  / l
Dec 108  / l 
Dec 111  / o
Dec 032  / [space]
Dec 119  / w
Dec 111  / o
Dec 114  / r
Dec 108  / l
Dec 100  / d
Dec 033  / !
Dec 000  / [null]
END



MARIE Assembly Program: Example 4.5

/This example illustrates the use of a simple subroutine to double the value stored at X

ORG 100 

Load X      / Load the first number to be doubled.

Store Temp / Use Temp as a parameter to pass value to Subr.

JnS Subr / Store the return address, and jump to the procedure.

Store X       / Store the first number, doubled

Load Y       / Load the second number to be doubled.

Store Temp

JnS Subr / Store the return address and jump to the procedure.

Loop, Store Y         / Store the second number doubled.

Halt            / End program.

X, DEC 20

Y, DEC 48

Temp, DEC 0

Ex4_4.mas in the MARIE simulator package



MARIE Assembly Program: Example 4.5

Subr, HEX 0 / Store return address here.

Load Temp / Actual subroutine to double numbers.

Add Temp / AC now holds double the value of Temp.

JumpI Subr / Return to calling code.

END



4.13 A Discussion on Decoding (1 of 21)

• A computer’s control unit keeps things 
synchronized, making sure that bits flow to the 
correct components as the components are 
needed.

• There are two general ways in which a control unit 
can be implemented: hardwired control and 
microprogrammed control. 
– With microprogrammed control, a small program is 

placed into read-only memory in the microcontroller.
– Hardwired controllers implement this program using 

digital logic components.



4.13 A Discussion on Decoding (2 of 21)

• Your text provides a complete list of the register 
transfer language for each of MARIE’s instructions.

• The microoperations given by each RTL define the 
operation of MARIE’s control unit.

• Each microoperation consists of a distinctive signal 
pattern that is interpreted by the control unit and 
results in the execution of an instruction.
– Recall, the RTL for the Add instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR



4.13 A Discussion on Decoding (3 of 21)

• Each of MARIE’s 
registers and main 
memory have a unique 
address along the 
datapath.

• The addresses take the 
form of signals issued 
by the control unit.

How many signal lines does MARIE’s control unit need? 



• Let us define two sets of 
three signals.

• One set, P2, P1, P0, controls 
reading from memory or a 
register, and the other set 
consisting of P5, P4, P3, 
controls writing to memory or 
a register.

The next slide shows a close up view of MARIE’s MBR.

4.13 A Discussion on Decoding (4 of 21)



4.13 A Discussion on Decoding (5 of 21)

The register MBR is enabled for reading when P0 and P1

are high, and enabled for writing when P3 and P4 are high.



4.13 A Discussion on Decoding (6 of 21)

• Careful inspection of MARIE’s 
RTL reveals that the ALU has 
only three operations: add, 
subtract, and clear.
– We will also define a fourth 

“do nothing” state.
• The entire set of MARIE’s control 

signals consists of:
– Register controls: P0 through P5, 

MR , and MW.
– ALU controls: A0 through A1 and 

LALT to control the ALU’s data 
source. 

– Timing: T0 through T7 and counter 
reset Cr



• Consider MARIE’s Add instruction. Its RTL is:
MAR  X

MBR  M[MAR]

AC  AC + MBR

• After an Add instruction is fetched, the address, X, is in 
the rightmost 12 bits of the IR, which has a datapath 
address of 7.

• X is copied to the MAR, which has a datapath address of 1.

• Thus we need to raise signals P0, P1, and P2 to read from 
the IR, and signal P3 to write to the MAR.

4.13 A Discussion on Decoding (7 of 21)



• Here is the complete signal sequence for MARIE’s Add 
instruction:

P3 P2 P1 P0 T3  : MAR  X

P4 P3 T4 MR      : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

[Reset counter]

• These signals are ANDed with combinational logic to 
bring about the desired machine behavior.

• The next slide shows the timing diagram for this 
instruction.

4.13 A Discussion on Decoding (8 of 21)



P3 P2 P1 P0 T3  : MAR  X

P4 P3 T4 MR      : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

[Reset counter]

4.13 A Discussion on Decoding (9 of 21)

• Notice the concurrent signal states 
during each machine cycle: C3

through C5.



• We note that the signal pattern just described is the 
same whether our machine used hardwired or 
microprogrammed control.

• In hardwired control, the bit pattern of machine 
instruction in the IR is decoded by combinational 
logic.

• The decoder output works with the control signals 
of the current system state to produce a new set of 
control signals.

A block diagram of a hardwired control unit is shown on 

the following slide.

4.13 A Discussion on Decoding 
(10 of 21)



4.13 A Discussion on Decoding 
(11 of 21)



• MARIE's instruction decoder. (Partial.)

4.13 A Discussion on Decoding 
(12 of 21)



• A ring counter that counts from 0 to 5

4.13 A Discussion on Decoding 
(13 of 21)



• This is the hardwired logic for MARIE’s Add 
= 0011 instruction.

4.13 A Discussion on Decoding 
(14 of 21)



• In microprogrammed control, instruction 
microcode produces control signal changes.

• Machine instructions are the input for a 
microprogram that converts the 1s and 0s of 
an instruction into control signals.

• The microprogram is stored in firmware, 
which is also called the control store.

• A microcode instruction is retrieved during 
each clock cycle.

4.13 A Discussion on Decoding 
(15 of 21)



• This is how a generic microprogrammed 
control unit might look.

4.13 A Discussion on Decoding 
(16 of 21)



• If MARIE were microprogrammed, the 
microinstruction format might look like this:

• MicroOp1 and MicroOp2 contain binary codes for 
each instruction. Jump is a single bit indicating that 
the value in the Dest field is a valid address and 
should be placed in the microsequencer.

4.13 A Discussion on Decoding 
(17 of 21)



• The table below contains MARIE’s 
microoperation codes along with the 
corresponding RTL:

4.13 A Discussion on Decoding 
(18 of 21)



• The first nine lines of MARIE’s 
microprogram are given below (using RTL 
for clarity):

4.13 A Discussion on Decoding 
(19 of 21)



• The first four lines are the fetch-decode-
execute cycle.

• The remaining lines are the beginning of a 
jump table.

4.13 A Discussion on Decoding 
(20 of 21)



• It’s important to remember that a microprogrammed 
control unit works like a system-in-miniature.

• Microinstructions are fetched, decoded, and executed 
in the same manner as regular instructions.

• This extra level of instruction interpretation is what 
makes microprogrammed control slower than 
hardwired control.

• The advantages of microprogrammed control are that it 
can support very complicated instructions and only the 
microprogram needs to be changed if the instruction 
set changes (or an error is found).

4.13 A Discussion on Decoding 
(21 of 21)



4.14 Real-World Architectures (1 of 7)

• MARIE shares many features with modern 
architectures but it is not an accurate depiction of 
them.

• In the following slides, we briefly examine two 
machine architectures.  

• We will look at an Intel architecture, which is a CISC 
machine and MIPS, which is a RISC machine.
– CISC is an acronym for complex instruction set 

computer.

– RISC stands for reduced instruction set computer.
We delve into the “RISC versus CISC” argument in Chapter 9.



4.14 Real-World Architectures (2 of 7)

• The classic Intel architecture, the 8086, was 
born in 1979. It is a CISC architecture.

• It was adopted by IBM for its famed PC, which 
was released in 1981.  

• The 8086 operated on 16-bit data words and 
supported 20-bit memory addresses.

• Later, to lower costs, the 8-bit 8088 was 
introduced. Like the 8086, it used 20-bit 
memory addresses.

What was the largest memory that the 8086 could address?



4.14 Real-World Architectures (3 of 7)

• The 8086 had four 16-bit general-purpose registers 
that could be accessed by the half-word.

• It also had a flags register, an instruction register, 
and a stack accessed through the values in two 
other registers, the base pointer and the stack 
pointer.  

• The 8086 had no built in floating-point processing.

• In 1980, Intel released the 8087 numeric 
coprocessor, but few users elected to install them 
because of their high cost.



4.14 Real-World Architectures (4 of 7)

• In 1985, Intel introduced the 32-bit 80386.
• It also had no built-in floating-point unit.
• The 80486, introduced in 1989, was an 80386 that 

had built-in floating-point processing and cache 
memory.

• The 80386 and 80486 offered downward 
compatibility with the 8086 and 8088.

• Software written for the smaller-word systems was 
directed to use the lower 16 bits of the 32-bit 
registers.



4.14 Real-World Architectures (5 of 7)

• Intel’s Pentium 4 introduced a brand new NetBurst 
architecture.

• Speed enhancing features include:
– Hyperthreading
– Hyperpipelining
– Wider instruction pipeline
– Execution trace cache (holds decoded instructions for 

possible reuse) multilevel cache and instruction pipelining.

• Intel, along with many others, is marrying many of the 
ideas of RISC architectures with microprocessors that 
are largely CISC.



4.14 Real-World Architectures (6 of 7)

• The MIPS family of CPUs has been one of the most 
successful in its class.

• In 1986 the first MIPS CPU was announced.

• It had a 32-bit word size and could address 4GB of 
memory.

• Over the years, MIPS processors have been used in 
general purpose computers as well as in games.

• The MIPS architecture now offers 32- and 64-bit 
versions.



4.14 Real-World Architectures (7 of 7)

• MIPS was one of the first RISC microprocessors.

• The original MIPS architecture had only 55 different 
instructions, as compared with the 8086 which had 
over 100.

• MIPS was designed with performance in mind: It is 
a load/store architecture, meaning that only the 
load and store instructions can access memory.

• The large number of registers in the MIPS 
architecture keeps bus traffic to a minimum. 

How does this design affect performance?



Conclusion (1 of 2)

• The major components of a computer system 
are its control unit, registers, memory, ALU, 
and data path.

• A built-in clock keeps everything synchronized.

• Control units can be microprogrammed or 
hardwired.

• Hardwired control units give better 
performance, while microprogrammed units 
are more adaptable to changes.



Conclusion (2 of 2)

• Computers run programs through iterative 
fetch-decode-execute cycles.

• Computers can run programs that are in 
machine language.

• An assembler converts mnemonic code to 
machine language.

• The Intel architecture is an example of a CISC 
architecture; MIPS is an example of a RISC 
architecture.


