
Chapter 3

Boolean Algebra

and Digital Logic

Objectives

• Understand the relationship between Boolean

logic and digital computer circuits.

• Learn how to design simple logic circuits.

• Understand how digital circuits work together

to form complex computer systems.

3.1 Introduction (1 of 2)

• In the latter part of the nineteenth century, George
Boole incensed philosophers and mathematicians
alike when he suggested that logical thought could
be represented through mathematical equations.
– How dare anyone suggest that human thought could

be encapsulated and manipulated like an algebraic
formula?

• Computers, as we know them today, are
implementations of Boole’s Laws of Thought.
– John Atanasoff and Claude Shannon were among the

first to see this connection.

3.1 Introduction (2 of 2)

• In the middle of the twentieth century, computers
were commonly known as “thinking machines” and
“electronic brains.”
– Many people were fearful of them.

• Nowadays, we rarely ponder the relationship
between electronic digital computers and human
logic. Computers are accepted as part of our lives.
– Many people, however, are still fearful of them.

• In this chapter, you will learn the simplicity that
constitutes the essence of the machine.

3.2 Boolean Algebra (1 of 17)

• Boolean algebra is a mathematical system for
the manipulation of variables that can have
one of two values.
– In formal logic, these values are “true” and “false.”
– In digital systems, these values are “on” and “off,”

1 and 0, or “high” and “low.”

• Boolean expressions are created by
performing operations on Boolean variables.
– Common Boolean operators include AND, OR, and

NOT.

3.2 Boolean Algebra (2 of 17)

• A Boolean operator can be
completely described using a
truth table.

• The truth table for the
Boolean operators AND and
OR are shown at the right.

• The AND operator is also
known as a Boolean product.
The OR operator is the
Boolean sum.

3.2 Boolean Algebra (3 of 17)

• The truth table for the
Boolean NOT operator is
shown at the right.

• The NOT operation is most
often designated by a prime
mark (X’). It is sometimes
indicated by an overbar (ഥX)
or an “elbow” (X).

3.2 Boolean Algebra (4 of 17)

• A Boolean function has:

– at least one Boolean variable,

– at least one Boolean operator, and

– at least one input from the set {0,1}.

• It produces an output that is also a
member of the set {0,1}.
Now you know why the binary numbering system is so

handy in digital systems.

3.2 Boolean Algebra (5 of 17)

• The truth table for the
Boolean function:

is shown at the right.
• To make evaluation of the

Boolean function easier, the
truth table contains extra
(shaded) columns to hold
evaluations of subparts of
the function.

3.2 Boolean Algebra (6 of 17)

• As with common arithmetic,
Boolean operations have
rules of precedence.

• The NOT operator has highest
priority, followed by AND and
then OR.

• This is how we chose the
(shaded) function subparts in
our table.

3.2 Boolean Algebra (7 of 17)

• Digital computers contain circuits that implement
Boolean functions.

• The simpler that we can make a Boolean function,
the smaller the circuit that will result.
– Simpler circuits are cheaper to build, consume less

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our
Boolean functions to their simplest form.

• There are a number of Boolean identities that help
us to do this.

3.2 Boolean Algebra (8 of 17)

• Most Boolean identities have an AND
(product) form as well as an OR (sum) form.
We give our identities using both forms.
Our first group is rather intuitive:

3.2 Boolean Algebra (9 of 17)

• Our second group of Boolean identities
should be familiar to you from your study
of algebra:

3.2 Boolean Algebra (10 of 17)

• Our last group of Boolean identities are
perhaps the most useful.

• If you have studied set theory or formal
logic, these laws are also familiar to you.

’

3.2 Boolean Algebra (11 of 17)

• We can use Boolean identities to simplify:

F(x,y,z) = xy + x′z + yz

3.2 Boolean Algebra (12 of 17)

• Sometimes it is more economical to build a
circuit using the complement of a function
(and complementing its result) than it is to
implement the function directly.

• DeMorgan’s law provides an easy way of
finding the complement of a Boolean
function.

• Recall DeMorgan’s law states:
(xy)’ = x’+ y’ and (x + y)’= x’y’

3.2 Boolean Algebra (13 of 17)

• DeMorgan’s law can be extended to any number of

variables.

• Replace each variable by its complement and

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the complement of:

is:

3.2 Boolean Algebra (14 of 17)

• Through our exercises in simplifying Boolean
expressions, we see that there are numerous
ways of stating the same Boolean expression.
– These “synonymous” forms are logically

equivalent.
– Logically equivalent expressions have identical

truth tables.

• In order to eliminate as much confusion as
possible, designers express Boolean functions
in standardized or canonical form.

3.2 Boolean Algebra (15 of 17)

• There are two canonical forms for Boolean
expressions: sum-of-products and product-of-sums.
– Recall the Boolean product is the AND operation and

the Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are
ORed together.
– For example:

• In the product-of-sums form, ORed variables are
ANDed together.
– For example:

3.2 Boolean Algebra (16 of 17)

• It is easy to convert a function
to sum-of-products form using
its truth table.

• We are interested in the values
of the variables that make the
function true (= 1).

• Using the truth table, we list
the values of the variables that
result in a true function value.

• Each group of variables is then
ORed together.

3.2 Boolean Algebra (17 of 17)

• The sum-of-products form for
our function is:

We note that this function is not in simplest terms. Our aim is only to
rewrite our function in canonical sum-of-products form.

3.3 Logic Gates (1 of 6)

• We have looked at Boolean functions in abstract
terms.

• In this section, we see that Boolean functions are
implemented in digital computer circuits called
gates.

• A gate is an electronic device that produces a result
based on two or more input values.
– In reality, gates consist of one to six transistors, but

digital designers think of them as a single unit.
– Integrated circuits contain collections of gates suited

to a particular purpose.

3.3 Logic Gates (2 of 6)

• The three simplest gates are the AND, OR, and NOT
gates.

• They correspond directly to their respective Boolean
operations, as you can see by their truth tables.

3.3 Logic Gates (3 of 6)

• Another very useful gate is the exclusive OR
(XOR) gate.

• The output of the XOR operation is true
only when the values of the inputs differ.

Note the special symbol 

for the XOR operation.

3.3 Logic Gates (4 of 6)

• NAND and NOR
are two very
important gates.
Their symbols and
truth tables are
shown at the
right.

3.3 Logic Gates (5 of 6)

• NAND and NOR are
known as universal
gates because they
are inexpensive to
manufacture and
any Boolean
function can be
constructed using
only NAND or only
NOR gates.

3.3 Logic Gates (6 of 6)

• Gates can have multiple inputs and more
than one output.

– A second output can be provided for the
complement of the operation.

– We’ll see more of this later.

3.4 Karnaugh Maps

• Simplification of Boolean functions leads to
simpler (and usually faster) digital circuits.

• Simplifying Boolean functions using
identities is time-consuming and error-
prone.

• This special section presents an easy,
systematic method for reducing Boolean
expressions.

3.4.1 Introduction

• In 1953, Maurice Karnaugh was a
telecommunications engineer at Bell Labs.

• While exploring the new field of digital logic
and its application to the design of telephone
circuits, he invented a graphical way of
visualizing and then simplifying Boolean
expressions.

• This graphical representation, now known as a
Karnaugh map, or Kmap, is named in his
honor.

3.4.2 Description of Kmaps and
Terminology (1 of 5)

• A Kmap is a matrix consisting of rows and
columns that represent the output values of a
Boolean function.

• The output values placed in each cell are
derived from the minterms of a Boolean
function.

• A minterm is a product term that contains all
of the function’s variables exactly once, either
complemented or not complemented.

• For example, the minterms for a function having the
inputs x and y are x’y, x’y, xy’, and xy.

• Consider the Boolean function, F(x,y)= xy + xy’

• Its minterms are: xy and xy’

3.4.2 Description of Kmaps and
Terminology (2 of 5)

3.4.2 Description of Kmaps and
Terminology (3 of 5)

• Similarly, a function having three inputs,
has the minterms that are shown in this
diagram.

3.4.2 Description of Kmaps and
Terminology (4 of 5)

• A Kmap has a cell for each
minterm.

• This means that it has a cell
for each line for the truth
table of a function.

• The truth table for the
function F(x,y) = xy is shown
at the right along with its
corresponding Kmap.

3.4.2 Description of Kmaps and
Terminology (5 of 5)

• As another example, we give
the truth table and KMap for
the function, F(x,y) = x + y at
the right.

• This function is equivalent to
the OR of all of the minterms
that have a value of 1. Thus:
F(x,y)= x+y = x’y+xy’+xy

3.4.3 Kmap Simplification for Two
Variables (1 of 3)

• Of course, the minterm function that we
derived from our Kmap was not in simplest
terms.
– That’s what we started with in this

example.

• We can, however, reduce our complicated
expression to its simplest terms by finding
adjacent 1s in the Kmap that can be
collected into groups that are powers of
two.

• In our example, we have two such groups.
– Can you find them?

3.4.3 Kmap Simplification for Two
Variables (2 of 3)

• The best way of selecting
two groups of 1s form our
simple Kmap is shown
below.

• We see that both groups
are powers of two and
that the groups overlap.

• The next slide gives
guidance for selecting
Kmap groups.

3.4.3 Kmap Simplification for Two
Variables (3 of 3)

• The rules of Kmap simplification are:
– Groupings can contain only 1s; no 0s.

– Groups can be formed only at right angles;
diagonal groups are not allowed.

– The number of 1s in a group must be a power
of 2 – even if it contains a single 1.

– The groups must be made as large as possible.

– Groups can overlap and wrap around the sides
of the Kmap.

3.4.4 Kmap Simplification for Three
Variables (1 of 7)

• A Kmap for three variables is constructed as shown
in the diagram below.

• We have placed each minterm in the cell that will
hold its value.
– Notice that the values for the yz combination at the top

of the matrix form a pattern that is not a normal binary
sequence.

𝒙′

3.4.4 Kmap Simplification for Three
Variables (2 of 7)

• Thus, the first row of the Kmap contains all
minterms where x has a value of zero.

• The first column contains all minterms
where y and z both have a value of zero.

𝒙′

3.4.4 Kmap Simplification for Three
Variables (3 of 7)

• Consider the function:

• Its Kmap is given below.

– What is the largest group of 1s that is a power
of 2?

F(X,Y,Z)= X’Y’Z + X’YZ + XY’Z + XYZ

3.4.4 Kmap Simplification for Three
Variables (4 of 7)

• This grouping tells us that
changes in the variables x and y
have no influence upon the value
of the function: They are
irrelevant.

• This means that the function,

reduces to F(x) = z.

You could verify this reduction with identities or a truth

table.

F(X,Y,Z)= X’Y’Z + X’YZ + XY’Z + XYZ

3.4.4 Kmap Simplification for Three
Variables (5 of 7)

• Now for a more complicated Kmap.
Consider the function:

• Its Kmap is shown below. There are (only)
two groupings of 1s.

– Can you find them?

F(X,Y,Z)= X’Y’Z’+ X’Y’Z + X’YZ

+ X’YZ’+ XY’Z’+ XYZ’

3.4.4 Kmap Simplification for Three
Variables (6 of 7)

• In this Kmap, we see an example of a group
that wraps around the sides of a Kmap.

• This group tells us that the values of x and y
are not relevant to the term of the function
that is encompassed by the group.
– What does this tell us about this term of the

function?

What about the

green group in

the top row?

• The green group in the top row tells us that only the
value of x is significant in that group.

• We see that it is complemented in that row, so the
other term of the reduced function is X’

• Our reduced function is F(X,Y,Z)= X’+ Z’

Recall that we had

six minterms in our

original function!

3.4.4 Kmap Simplification for Three
Variables (7 of 7)

3.4.5 Kmap Simplification for Four
Variables (1 of 4)

• Our model can be extended to
accommodate the 16 minterms that are
produced by a four-input function.

• This is the format for a 16-minterm Kmap:

3.4.5 Kmap Simplification for Four
Variables (2 of 4)

• We have populated the Kmap shown below
with the nonzero minterms from the function:

– Can you identify (only) three groups in this Kmap?

Recall that

groups can

overlap.

F(W,X,Y,Z)= W’X’Y’Z’+ W’X’Y’Z + W’X’YZ’

+ W’XYZ’+ WX’Y’Z’+ WX’Y’Z + WX’YZ’

3.4.5 Kmap Simplification for Four
Variables (3 of 4)

• Our three groups consist of:
– A purple group entirely within the Kmap at the right.

– A pink group that wraps the top and bottom.

– A green group that spans the corners.

• Thus we have three terms in our final function:

F(W,X,Y,Z)= X’Y’+ X’Z’

+ W’YZ’

3.4.5 Kmap Simplification for Four
Variables (4 of 4)

• It is possible to have a choice as to how to
pick groups within a Kmap, while keeping
the groups as large as possible.

• The (different) functions that result from
the groupings below are logically
equivalent.

3.4.6 Don’t Care Conditions (1 of 5)

• Real circuits don’t always need to have an
output defined for every possible input.
– For example, some calculator displays consist of 7-

segment LEDs. These LEDs can display 27 – 1
patterns, but only ten of them are useful.

• If a circuit is designed so that a particular set
of inputs can never happen, we call this set of
inputs a don’t care condition.

• They are very helpful to us in Kmap circuit
simplification.

3.4.6 Don’t Care Conditions (2 of 5)

• In a Kmap, a don’t care
condition is identified by
an X in the cell of the
minterm(s) for the don’t
care inputs, as shown
here.

• In performing the
simplification, we are
free to include or ignore
the X’s when creating
our groups.

3.4.6 Don’t Care Conditions (3 of 5)

• In one grouping in the Kmap below, we
have the function:
F(W,X,Y,Z)= W’X’+ YZ

3.4.6 Don’t Care Conditions (4 of 5)

• A different grouping gives us the function:

F(W,X,Y,Z)= W’Z+ YZ

3.4.6 Don’t Care Conditions (5 of 5)

• The truth table of: differs from the truth table of:

• However, the values for which they differ, are the inputs
for which we have don’t care conditions.

F(W,X,Y,Z)= W’X’+ YZ F(W,X,Y,Z)= W’Z + YZ

3.4.7 Summary (1 of 2)

• Kmaps provide an easy graphical method of
simplifying Boolean expressions.

• A Kmap is a matrix consisting of the outputs of
the minterms of a Boolean function.

• In this section, we have discussed 2-, 3-, and 4-
input Kmaps. This method can be extended to
any number of inputs through the use of
multiple tables.

3.4.7 Summary (2 of 2)

• Recapping the rules of Kmap simplification:
– Groupings can contain only 1s; no 0s.
– Groups can be formed only at right angles;

diagonal groups are not allowed.
– The number of 1s in a group must be a power of 2

– even if it contains a single 1.
– The groups must be made as large as possible.
– Groups can overlap and wrap around the sides of

the Kmap.
– Use don’t care conditions when you can.

3.5 Digital Components (1 of 8)

• The main thing to remember is that
combinations of gates implement Boolean
functions.

• The circuit above implements the Boolean
function F(x,y,z) = x + y’z:

We simplify our Boolean expressions so

that we can create simpler circuits.

3.5 Digital Components (2 of 8)

• Standard digital components are combined
into single integrated circuit packages.

• Boolean logic can be used to implement the
desired functions.

3.5 Digital Components (3 of 8)

• The Boolean circuit:

• Can be rendered using only NAND gates as:

3.5 Digital Components (4 of 8)

• So we can wire the pre-packaged circuit to
implement our function:

3.5 Digital Components (5 of 8)

• Boolean logic is used to solve practical
problems.

• Expressed in terms of Boolean logic
practical problems can be expressed by
truth tables.

• Truth tables can be readily rendered into
Boolean logic circuits.

3.5 Digital Components (6 of 8)

• Suppose we are to design a logic circuit to
determine the best time to plant a garden.

• We consider three factors (inputs):
– (1) time, where 0 represents day and 1 represents

evening;
– (2) moon phase, where 0 represents not full and 1

represents full; and
– (3) temperature, where 0 represents 45°F and below,

and 1 represents over 45°F.

• We determine that the best time to plant a garden
is during the evening with a full moon.

3.5 Digital Components (7 of 8)

• This results in the following truth table:

3.5 Digital Components (8 of 8)

• From the truth table, we derive the circuit:

3.6 Combinational Circuits (1 of 12)

• We have designed a circuit that implements the
Boolean function:

• This circuit is an example of a combinational logic
circuit.

• Combinational logic circuits produce a specified
output (almost) at the instant when input values
are applied.
– In a later section, we will explore circuits where this is

not the case.

3.6 Combinational Circuits (2 of 12)

• Combinational logic
circuits give us many
useful devices.

• One of the simplest is
the half adder, which
finds the sum of two bits.

• We can gain some
insight as to the
construction of a half
adder by looking at its
truth table, shown at the
right.

3.6 Combinational Circuits (3 of 12)

• As we see, the sum can be found using the
XOR operation and the carry using the AND
operation.

3.6 Combinational Circuits (4 of 12)

• We can change our
half adder into to a
full adder by
including gates for
processing the carry
bit.

• The truth table for a
full adder is shown
at the right.

3.6 Combinational Circuits (5 of 12)

• How can we change the half adder shown
below to make it a full adder?

3.6 Combinational Circuits (6 of 12)

• Here’s our completed full adder.

3.6 Combinational Circuits (7 of 12)

• Just as we combined half adders to make a full
adder, full adders can connected in series.

• The carry bit “ripples” from one adder to the
next; hence, this configuration is called a
ripple-carry adder.

Today’s systems employ more efficient adders.

3.6 Combinational Circuits (8 of 12)

• Decoders are another important type of
combinational circuit.

• Among other things, they are useful in selecting a
memory location according a binary value placed
on the address lines of a memory bus.

• Address decoders with n inputs can select any of 2n

locations.

This is a block

diagram for a

decoder.

3.6 Combinational Circuits (9 of 12)

• This is what a 2-to-4 decoder looks like on
the inside.

If x = 0 and y = 1,

which output line

is enabled?

xy

3.6 Combinational Circuits (10 of 12)

• A multiplexer does just the
opposite of a decoder.

• It selects a single output from
several inputs.

• The particular input chosen for
output is determined by the
value of the multiplexer’s
control lines.

• To be able to select among n
inputs, log2n control lines are
needed.

• This is a block diagram for a
multiplexer.

3.6 Combinational Circuits (11 of 12)

• This is what a 4-to-1 multiplexer looks like
on the inside.

If S0 = 1 and S1 = 0,

which input is

transferred to the

output?

3.6 Combinational Circuits (12 of 12)

• This shifter moves
the bits of a nibble
one position to the
left or right.

If S = 0, in which

direction do the

input bits shift?

3.7 Sequential Circuits (1 of 30)

• Combinational logic circuits are perfect for
situations when we require the immediate
application of a Boolean function to a set of inputs.

• There are other times, however, when we need a
circuit to change its value with consideration to its
current state as well as its inputs.
– These circuits have to “remember” their current state.

• Sequential logic circuits provide this functionality
for us.

3.7 Sequential Circuits (2 of 30)

• As the name implies, sequential logic circuits
require a means by which events can be sequenced.

• State changes are controlled by clocks.
– A “clock” is a special circuit that sends electrical pulses

through a circuit.

• Clocks produce electrical waveforms such as the
one shown below.

3.7 Sequential Circuits (3 of 30)

• State changes occur in sequential circuits
only when the clock ticks.

• Circuits can change state on the rising
edge, falling edge, or when the clock pulse
reaches its highest voltage.

3.7 Sequential Circuits (4 of 30)

• Circuits that change state on the rising edge,
or falling edge of the clock pulse are called
edge-triggered.

• Level-triggered circuits change state when the
clock voltage reaches its highest or lowest
level.

3.7 Sequential Circuits (5 of 30)

• To retain their state values, sequential circuits rely
on feedback.

• Feedback in digital circuits occurs when an output is
looped back to the input.

• A simple example of this concept is shown below.
– If Q is 0 it will always be 0, if it is 1, it will always be 1.

Why?

3.7 Sequential Circuits (6 of 30)

• You can see how feedback works by
examining the most basic sequential logic
components, the SR flip-flop.

– The “SR” stands for set/reset.

• The internals of an SR flip-flop are shown
below, along with its block diagram.

3.7 Sequential Circuits (7 of 30)

• The behavior of an SR flip-flop is described
by a characteristic table.

• Q(t) means the value of the output at time
t. Q(t+1) is the value of Q after the next
clock pulse.

3.7 Sequential Circuits (8 of 30)

• The SR flip-flop actually has
three inputs: S, R, and its
current output, Q.

• Thus, we can construct a
truth table for this circuit,
as shown at the right.

• Notice the two undefined
values. When both S and R
are 1, the SR flip-flop is
unstable.

3.7 Sequential Circuits (9 of 30)

• If we can be sure that the inputs
to an SR flip-flop will never both
be 1, we will never have an
unstable circuit. This may not
always be the case.

• The SR flip-flop can be modified
to provide a stable state when
both inputs are 1.

• This modified flip-flop is called a
JK flip-flop, shown at the right.

3.7 Sequential Circuits (10 of 30)

• At the right, we see
how an SR flip-flop
can be modified to
create a JK flip-flop.

• The characteristic
table indicates that
the flip-flop is stable
for all inputs.

Q

Q′

3.7 Sequential Circuits (11 of 30)

• Another modification of
the SR flip-flop is the D flip-
flop, shown below with its
characteristic table.

• You will notice that the
output of the flip-flop
remains the same during
subsequent clock pulses.
The output changes only
when the value of D
changes.

3.7 Sequential Circuits (12 of 30)

• The D flip-flop is the fundamental circuit of
computer memory.

– D flip-flops are usually illustrated using the
block diagram shown below.

• The characteristic table for the D flip-flop is
shown at the right.

3.7 Sequential Circuits (13 of 30)

• The behavior of sequential circuits can be expressed
using characteristic tables or finite state machines
(FSMs).
– FSMs consist of a set of nodes that hold the states of the

machine and a set of arcs that connect the states.

• Moore and Mealy machines are two types of FSMs that
are equivalent.
– They differ only in how they express the outputs of the

machine.

• Moore machines place outputs on each node, while
Mealy machines present their outputs on the
transitions.

3.7 Sequential Circuits (14 of 30)

• The behavior of a JK flop-flop is depicted below

by a Moore machine (left) and a Mealy machine

(right).

3.7 Sequential Circuits (15 of 30)

• Although the behavior of Moore and Mealy
machines is identical, their
implementations differ.

• This is our Moore machine.

3.7 Sequential Circuits (16 of 30)

• Although the behavior of Moore and Mealy
machines is identical, their
implementations differ.

• This is our Mealy machine

3.7 Sequential Circuits (17 of 30)

• It is difficult to express the complexities of actual
implementations using only Moore and Mealy
machines.
– For one thing, they do not address the intricacies of timing

very well.
– Secondly, it is often the case that an interaction of

numerous signals is required to advance a machine from
one state to the next.

• For these reasons, Christopher Clare invented the
algorithmic state machine (ASM).

• The next slide illustrates the components of an ASM.

3.7 Sequential Circuits (18 of 30)

3.7 Sequential Circuits (19 of 30)

• This is an ASM for a microwave oven.

3.7 Sequential Circuits (20 of 30)

• Sequential circuits are used anytime that we
have a “stateful” application.
– A stateful application is one where the next state

of the machine depends on the current state of
the machine and the input.

• A stateful application requires both
combinational and sequential logic.

• The following slides provide several examples
of circuits that fall into this category.

• Can you think of others?

3.7 Sequential Circuits (21 of 30)

• This illustration
shows a 4-bit
register consisting
of D flip-flops. You
will usually see its
block diagram
(below) instead.

A larger memory configuration

is shown on the next slide.

3.7 Sequential Circuits (22 of 30)

3.7 Sequential Circuits (23 of 30)

• A binary counter is
another example of a
sequential circuit.

• The low-order bit is
complemented at each
clock pulse.

• Whenever it changes from
0 to 1, the next bit is
complemented, and so on
through the other flip-
flops.

3.7 Sequential Circuits (24 of 30)

• Convolutional coding and decoding requires
sequential circuits.

• One important convolutional code is the (2,1)
convolutional code that underlies the PRML code
that is briefly described at the end of Chapter 2.

• A (2, 1) convolutional code is so named because
two symbols are output for every one symbol input.

• A convolutional encoder for PRML with its
characteristic table is shown on the next slide.

3.7 Sequential Circuits (25 of 30)

• This is the Mealy machine for our encoder.

3.7 Sequential Circuits (26 of 30)

F(1101 0010) = 11 01 01 00 10 11 11 10.

3.7 Sequential Circuits (27 of 30)

• The fact that there is a
limited set of possible
state transitions in the
encoding process is crucial
to the error correcting
capabilities of PRML.

• You can see by our Mealy
machine for encoding
that:

F(11 01 01 00 10 11 11 10) = 1101 0010

3.7 Sequential Circuits (28 of 30)

• The decoding of our
code is provided by
inverting the inputs
and outputs of the
Mealy machine for the
encoding process.

• You can see by our
Mealy machine for
decoding that:

F(00 10 11 11) = 1001

3.7 Sequential Circuits (29 of 30)

• Yet another way of
looking at the decoding
process is through a
lattice diagram.

• Here we have plotted
the state transitions
based on the input (top)
and showing the output
at the bottom for the
string 00 10 11 11.

F(00 10 11 11) = 1001

3.7 Sequential Circuits (30 of 30)

• Suppose we receive
the erroneous string:
10 10 11 11.

• Here we have plotted
the accumulated errors
based on the allowable
transitions.

• The path of least error
outputs 1001, thus
1001 is the string of
maximum likelihood.

3.8 Designing Circuits (1 of 3)

• We have seen digital circuits from two points of
view: digital analysis and digital synthesis.
– Digital analysis explores the relationship between a

circuits inputs and its outputs.
– Digital synthesis creates logic diagrams using the

values specified in a truth table.

• Digital systems designers must also be mindful of
the physical behaviors of circuits to include minute
propagation delays that occur between the time
when a circuit’s inputs are energized and when the
output is accurate and stable.

3.8 Designing Circuits (2 of 3)

• Digital designers rely on specialized software,
such as VHDL and Verilog, to create efficient
circuits.
– Thus, software is an enabler for the construction

of better hardware.

• Of course, software is in reality a collection of
algorithms that could just as well be
implemented in hardware.
– Recall the Principle of Equivalence of Hardware

and Software.

3.8 Designing Circuits (3 of 3)

• When we need to implement a simple, specialized
algorithm and its execution speed must be as fast
as possible, a hardware solution is often preferred.

• This is the idea behind embedded systems, which
are small special-purpose computers that we find in
many everyday things.

• Embedded systems require special programming
that demands an understanding of the operation of
digital circuits, the basics of which you have learned
in this chapter.

Conclusion (1 of 3)

• Computers are implementations of Boolean
logic.

• Boolean functions are completely described by
truth tables.

• Logic gates are small circuits that implement
Boolean operators.

• The basic gates are AND, OR, and NOT.
– The XOR gate is very useful in parity checkers and

adders.

• The “universal gates” are NOR, and NAND.

Conclusion (2 of 3)

• Computer circuits consist of combinational
logic circuits and sequential logic circuits.

• Combinational circuits produce outputs
(almost) immediately when their inputs
change.

• Sequential circuits require clocks to control
their changes of state.

• The basic sequential circuit unit is the flip-flop:
The behaviors of the SR, JK, and D flip-flops
are the most important to know.

Conclusion (3 of 3)

• The behavior of sequential circuits can be
expressed using characteristic tables or through
various finite state machines.

• Moore and Mealy machines are two finite state
machines that model high-level circuit behavior.

• Algorithmic state machines are better than Moore
and Mealy machines at expressing timing and
complex signal interactions.

• Examples of sequential circuits include memory,
counters, and Viterbi encoders and decoders.

