
Chapter 3

Boolean Algebra 

and Digital Logic



Objectives

• Understand the relationship between Boolean 

logic and digital computer circuits.

• Learn how to design simple logic circuits.

• Understand how digital circuits work together 

to form complex computer systems.



3.1 Introduction (1 of 2)

• In the latter part of the nineteenth century, George 
Boole incensed philosophers and mathematicians 
alike when he suggested that logical thought could 
be represented through mathematical equations.
– How dare anyone suggest that human thought could 

be encapsulated and manipulated like an algebraic 
formula?

• Computers, as we know them today, are 
implementations of Boole’s Laws of Thought.
– John Atanasoff and Claude Shannon were among the 

first to see this connection.



3.1 Introduction (2 of 2)

• In the middle of the twentieth century, computers 
were commonly known as “thinking machines” and 
“electronic brains.”
– Many people were fearful of them.

• Nowadays, we rarely ponder the relationship 
between electronic digital computers and human 
logic. Computers are accepted as part of our lives.
– Many people, however, are still fearful of them.

• In this chapter, you will learn the simplicity that 
constitutes the essence of the machine.



3.2 Boolean Algebra (1 of 17)

• Boolean algebra is a mathematical system for 
the manipulation of variables that can have 
one of two values.
– In formal logic, these values are “true” and “false.”
– In digital systems, these values are “on” and “off,” 

1 and 0, or “high” and “low.”

• Boolean expressions are created by 
performing operations on Boolean variables.
– Common Boolean operators include AND, OR, and 

NOT.



3.2 Boolean Algebra (2 of 17)

• A Boolean operator can be 
completely described using a 
truth table.

• The truth table for the 
Boolean operators AND and 
OR are shown at the right.

• The AND operator is also 
known as a Boolean product. 
The OR operator is the 
Boolean sum.



3.2 Boolean Algebra (3 of 17)

• The truth table for the 
Boolean NOT operator is 
shown at the right.

• The NOT operation is most 
often designated by a prime 
mark (X’). It is sometimes 
indicated by an overbar (ഥX) 
or an “elbow” (X).



3.2 Boolean Algebra (4 of 17)

• A Boolean function has:

– at least one Boolean variable, 

– at least one Boolean operator, and 

– at least one input from the set {0,1}.  

• It produces an output that is also a 
member of the set {0,1}.
Now you know why the binary numbering system is so 

handy in digital systems.



3.2 Boolean Algebra (5 of 17)

• The truth table for the 
Boolean function: 

is shown at the right.
• To make evaluation of the 

Boolean function easier, the 
truth table contains extra 
(shaded) columns to hold 
evaluations of subparts of 
the function.



3.2 Boolean Algebra (6 of 17)

• As with common arithmetic, 
Boolean operations have 
rules of precedence.

• The NOT operator has highest 
priority, followed by AND and 
then OR.

• This is how we chose the 
(shaded) function subparts in 
our table. 



3.2 Boolean Algebra (7 of 17)

• Digital computers contain circuits that implement 
Boolean functions.

• The simpler that we can make a Boolean function, 
the smaller the circuit that will result.
– Simpler circuits are cheaper to build, consume less 

power, and run faster than complex circuits.

• With this in mind, we always want to reduce our 
Boolean functions to their simplest form.

• There are a number of Boolean identities that help 
us to do this. 



3.2 Boolean Algebra (8 of 17)

• Most Boolean identities have an AND 
(product) form as well as an OR (sum) form. 
We give our identities using both forms. 
Our first group is rather intuitive:



3.2 Boolean Algebra (9 of 17)

• Our second group of Boolean identities 
should be familiar to you from your study 
of algebra:



3.2 Boolean Algebra (10 of 17)

• Our last group of Boolean identities are 
perhaps the most useful.

• If you have studied set theory or formal 
logic, these laws are also familiar to you.

’



3.2 Boolean Algebra (11 of 17)

• We can use Boolean identities to simplify:

F(x,y,z) = xy + x′z + yz



3.2 Boolean Algebra (12 of 17)

• Sometimes it is more economical to build a 
circuit using the complement of a function 
(and complementing its result) than it is to 
implement the function directly.

• DeMorgan’s law provides an easy way of 
finding the complement of a Boolean 
function.

• Recall DeMorgan’s law states:
(xy)’ = x’+ y’ and (x + y)’= x’y’



3.2 Boolean Algebra (13 of 17)

• DeMorgan’s law can be extended to any number of 

variables.

• Replace each variable by its complement and 

change all ANDs to ORs and all ORs to ANDs.

• Thus, we find the complement of:

is:



3.2 Boolean Algebra (14 of 17) 

• Through our exercises in simplifying Boolean 
expressions, we see that there are numerous 
ways of stating the same Boolean expression.
– These “synonymous” forms are logically 

equivalent.
– Logically equivalent expressions have identical 

truth tables.

• In order to eliminate as much confusion as 
possible, designers express Boolean functions 
in standardized or canonical form.



3.2 Boolean Algebra (15 of 17)

• There are two canonical forms for Boolean 
expressions: sum-of-products and product-of-sums.
– Recall the Boolean product is the AND operation and 

the Boolean sum is the OR operation.

• In the sum-of-products form, ANDed variables are 
ORed together.
– For example:

• In the product-of-sums form, ORed variables are 
ANDed together.
– For example:



3.2 Boolean Algebra (16 of 17)

• It is easy to convert a function 
to sum-of-products form using 
its truth table.

• We are interested in the values 
of the variables that make the 
function true (= 1).

• Using the truth table, we list 
the values of the variables that 
result in a true function value.

• Each group of variables is then 
ORed together.



3.2 Boolean Algebra (17 of 17)

• The sum-of-products form for 
our function is:

We note that this function is not in simplest terms. Our aim is only to 
rewrite our function in canonical sum-of-products form. 



3.3 Logic Gates (1 of 6)

• We have looked at Boolean functions in abstract 
terms.

• In this section, we see that Boolean functions are 
implemented in digital computer circuits called 
gates.

• A gate is an electronic device that produces a result 
based on two or more input values.
– In reality, gates consist of one to six transistors, but 

digital designers think of them as a single unit.
– Integrated circuits contain collections of gates suited 

to a particular purpose.



3.3 Logic Gates (2 of 6)

• The three simplest gates are the AND, OR, and NOT 
gates.

• They correspond directly to their respective Boolean 
operations, as you can see by their truth tables.



3.3 Logic Gates (3 of 6)

• Another very useful gate is the exclusive OR 
(XOR) gate.  

• The output of the XOR operation is true 
only when the values of the inputs differ.

Note the special symbol 

for the XOR operation.



3.3 Logic Gates (4 of 6)

• NAND and NOR 
are two very 
important gates. 
Their symbols and 
truth tables are 
shown at the 
right. 



3.3 Logic Gates (5 of 6)

• NAND and NOR are 
known as universal 
gates because they 
are inexpensive to 
manufacture and 
any Boolean 
function can be 
constructed using 
only NAND or only 
NOR gates.  



3.3 Logic Gates (6 of 6)

• Gates can have multiple inputs and more 
than one output.

– A second output can be provided for the 
complement of the operation.

– We’ll see more of this later.



3.4 Karnaugh Maps

• Simplification of Boolean functions leads to 
simpler (and usually faster) digital circuits.

• Simplifying Boolean functions using 
identities is time-consuming and error-
prone.

• This special section presents an easy, 
systematic method for reducing Boolean 
expressions.



3.4.1 Introduction

• In 1953, Maurice Karnaugh was a 
telecommunications engineer at Bell Labs.

• While exploring the new field of digital logic 
and its application to the design of telephone 
circuits, he invented a graphical way of 
visualizing and then simplifying Boolean 
expressions.

• This graphical representation, now known as a 
Karnaugh map, or Kmap, is named in his 
honor.



3.4.2 Description of Kmaps and 
Terminology (1 of 5) 

• A Kmap is a matrix consisting of rows and 
columns that represent the output values of a 
Boolean function.

• The output values placed in each cell are 
derived from the minterms of a Boolean 
function.

• A minterm is a product term that contains all 
of the function’s variables exactly once, either 
complemented or not complemented.



• For example, the minterms for a function having the 
inputs x and y are x’y, x’y, xy’, and xy.

• Consider the Boolean function, F(x,y)= xy + xy’

• Its minterms are: xy and xy’

3.4.2 Description of Kmaps and 
Terminology (2 of 5) 



3.4.2 Description of Kmaps and 
Terminology (3 of 5) 

• Similarly, a function having three inputs, 
has the minterms that are shown in this 
diagram.



3.4.2 Description of Kmaps and 
Terminology (4 of 5) 

• A Kmap has a cell for each 
minterm.

• This means that it has a cell 
for each line for the truth 
table of a function.

• The truth table for the 
function F(x,y) = xy is shown 
at the right along with its 
corresponding Kmap.



3.4.2 Description of Kmaps and 
Terminology (5 of 5) 

• As another example, we give 
the truth table and KMap for 
the function, F(x,y) = x + y at 
the right.

• This function is equivalent to 
the OR of all of the minterms 
that have a value of 1. Thus:
F(x,y)= x+y = x’y+xy’+xy



3.4.3 Kmap Simplification for Two 
Variables (1 of 3) 

• Of course, the minterm function that we 
derived from our Kmap was not in simplest 
terms.  
– That’s what we started with in this 

example.

• We can, however, reduce our complicated 
expression to its simplest terms by finding 
adjacent 1s in the Kmap that can be 
collected into groups that are powers of 
two.

• In our example, we have two such groups.
– Can you find them?



3.4.3 Kmap Simplification for Two 
Variables (2 of 3) 

• The best way of selecting 
two groups of 1s form our 
simple Kmap is shown 
below.  

• We see that both groups 
are powers of two and 
that the groups overlap.

• The next slide gives 
guidance for selecting 
Kmap groups.



3.4.3 Kmap Simplification for Two 
Variables (3 of 3) 

• The rules of Kmap simplification are:
– Groupings can contain only 1s; no 0s.

– Groups can be formed only at right angles; 
diagonal groups are not allowed.

– The number of 1s in a group must be a power 
of 2 – even if it contains a single 1.

– The groups must be made as large as possible.

– Groups can overlap and wrap around the sides 
of the Kmap.



3.4.4 Kmap Simplification for Three 
Variables (1 of 7) 

• A Kmap for three variables is constructed as shown 
in the diagram below.

• We have placed each minterm in the cell that will 
hold its value.
– Notice that the values for the yz combination at the top 

of the matrix form a pattern that is not a normal binary 
sequence.

𝒙′



3.4.4 Kmap Simplification for Three 
Variables (2 of 7) 

• Thus, the first row of the Kmap contains all 
minterms where x has a value of zero.

• The first column contains all minterms 
where y and z both have a value of zero.

𝒙′



3.4.4 Kmap Simplification for Three 
Variables (3 of 7) 

• Consider the function:

• Its Kmap is given below.

– What is the largest group of 1s that is a power 
of 2?

F(X,Y,Z)= X’Y’Z + X’YZ + XY’Z + XYZ



3.4.4 Kmap Simplification for Three 
Variables (4 of 7) 

• This grouping tells us that 
changes in the variables x and y 
have no influence upon the value 
of the function: They are 
irrelevant.

• This means that the function,

reduces to F(x) = z.

You could verify this reduction with identities or a truth 

table.

F(X,Y,Z)= X’Y’Z + X’YZ + XY’Z + XYZ



3.4.4 Kmap Simplification for Three 
Variables (5 of 7) 

• Now for a more complicated Kmap. 
Consider the function:

• Its Kmap is shown below. There are (only) 
two groupings of 1s.

– Can you find them?

F(X,Y,Z)= X’Y’Z’+ X’Y’Z + X’YZ 

+ X’YZ’+ XY’Z’+ XYZ’



3.4.4 Kmap Simplification for Three 
Variables (6 of 7) 

• In this Kmap, we see an example of a group 
that wraps around the sides of a Kmap.

• This group tells us that the values of x and y
are not relevant to the term of the function 
that is encompassed by the group.
– What does this tell us about this term of the 

function?

What about the 

green group in 

the top row?



• The green group in the top row tells us that only the 
value of x is significant in that group.

• We see that it is complemented in that row, so the 
other term of the reduced function is X’

• Our reduced function is F(X,Y,Z)= X’+ Z’

Recall that we had 

six minterms in our 

original function!

3.4.4 Kmap Simplification for Three 
Variables (7 of 7) 



3.4.5 Kmap Simplification for Four 
Variables (1 of 4)

• Our model can be extended to 
accommodate the 16 minterms that are 
produced by a four-input function.

• This is the format for a 16-minterm Kmap:



3.4.5 Kmap Simplification for Four 
Variables (2 of 4) 

• We have populated the Kmap shown below 
with the nonzero minterms from the function:

– Can you identify (only) three groups in this Kmap?

Recall that 

groups can 

overlap.

F(W,X,Y,Z)= W’X’Y’Z’+ W’X’Y’Z + W’X’YZ’ 

+ W’XYZ’+ WX’Y’Z’+ WX’Y’Z + WX’YZ’



3.4.5 Kmap Simplification for Four 
Variables (3 of 4) 

• Our three groups consist of:
– A purple group entirely within the Kmap at the right.

– A pink group that wraps the top and bottom.

– A green group that spans the corners.

• Thus we have three terms in our final function:

F(W,X,Y,Z)= X’Y’+ X’Z’

+ W’YZ’



3.4.5 Kmap Simplification for Four 
Variables (4 of 4) 

• It is possible to have a choice as to how to 
pick groups within a Kmap, while keeping 
the groups as large as possible.

• The (different) functions that result from 
the groupings below are logically 
equivalent.



3.4.6 Don’t Care Conditions (1 of 5) 

• Real circuits don’t always need to have an 
output defined for every possible input.
– For example, some calculator displays consist of 7-

segment LEDs. These LEDs can display 27 – 1 
patterns, but only ten of them are useful.

• If a circuit is designed so that a particular set 
of inputs can never happen, we call this set of 
inputs a don’t care condition.

• They are very helpful to us in Kmap circuit 
simplification.



3.4.6 Don’t Care Conditions (2 of 5) 

• In a Kmap, a don’t care 
condition is identified by 
an X in the cell of the 
minterm(s) for the don’t 
care inputs, as shown 
here.

• In performing the 
simplification, we are 
free to include or ignore 
the X’s when creating 
our groups.



3.4.6 Don’t Care Conditions (3 of 5) 

• In one grouping in the Kmap below, we 
have the function:
F(W,X,Y,Z)= W’X’+ YZ



3.4.6 Don’t Care Conditions (4 of 5) 

• A different grouping gives us the function:

F(W,X,Y,Z)= W’Z+ YZ



3.4.6 Don’t Care Conditions (5 of 5) 

• The truth table of: differs from the truth table of:

• However, the values for which they differ, are the inputs 
for which we have don’t care conditions.

F(W,X,Y,Z)= W’X’+ YZ F(W,X,Y,Z)= W’Z + YZ



3.4.7 Summary (1 of 2) 

• Kmaps provide an easy graphical method of 
simplifying Boolean expressions.

• A Kmap is a matrix consisting of the outputs of 
the minterms of a Boolean function.

• In this section, we have discussed 2-, 3-, and 4-
input Kmaps. This method can be extended to 
any number of inputs through the use of 
multiple tables.



3.4.7 Summary (2 of 2)

• Recapping the rules of Kmap simplification:
– Groupings can contain only 1s; no 0s.
– Groups can be formed only at right angles; 

diagonal groups are not allowed.
– The number of 1s in a group must be a power of 2 

– even if it contains a single 1.
– The groups must be made as large as possible.
– Groups can overlap and wrap around the sides of 

the Kmap.
– Use don’t care conditions when you can.



3.5 Digital Components (1 of 8)

• The main thing to remember is that 
combinations of gates implement Boolean 
functions.

• The circuit above implements the Boolean 
function F(x,y,z) = x + y’z:

We simplify our Boolean expressions so 

that we can create simpler circuits.



3.5 Digital Components (2 of 8)

• Standard digital components are combined 
into single integrated circuit packages.

• Boolean logic can be used to implement the 
desired functions.



3.5 Digital Components (3 of 8)

• The Boolean circuit:

• Can be rendered using only NAND gates as:



3.5 Digital Components (4 of 8)

• So we can wire the pre-packaged circuit to 
implement our function:



3.5 Digital Components (5 of 8)

• Boolean logic is used to solve practical 
problems.

• Expressed in terms of Boolean logic 
practical problems can be expressed by 
truth tables.

• Truth tables can be readily rendered into 
Boolean logic circuits.



3.5 Digital Components (6 of 8)

• Suppose we are to design a logic circuit to 
determine the best time to plant a garden. 

• We consider three factors (inputs): 
– (1) time, where 0 represents day and 1 represents 

evening; 
– (2) moon phase, where 0 represents not full and 1 

represents full; and 
– (3) temperature, where 0 represents 45°F and below, 

and 1 represents over 45°F. 

• We determine that the best time to plant a garden 
is during the evening with a full moon.



3.5 Digital Components (7 of 8)

• This results in the following truth table:



3.5 Digital Components (8 of 8)

• From the truth table, we derive the circuit:



3.6 Combinational Circuits (1 of 12)

• We have designed a circuit that implements the 
Boolean function:

• This circuit is an example of a combinational logic 
circuit.

• Combinational logic circuits produce a specified 
output (almost) at the instant when input values 
are applied.
– In a later section, we will explore circuits where this is 

not the case.



3.6 Combinational Circuits (2 of 12)

• Combinational logic 
circuits give us many 
useful devices.

• One of the simplest is 
the half adder, which 
finds the sum of two bits.

• We can gain some 
insight as to the 
construction of a half 
adder by looking at its 
truth table, shown at the 
right.



3.6 Combinational Circuits (3 of 12)

• As we see, the sum can be found using the 
XOR operation and the carry using the AND 
operation.



3.6 Combinational Circuits (4 of 12)

• We can change our 
half adder into to a 
full adder by 
including gates for 
processing the carry 
bit.

• The truth table for a 
full adder is shown 
at the right.



3.6 Combinational Circuits (5 of 12)

• How can we change the half adder shown 
below to make it a full adder?



3.6 Combinational Circuits (6 of 12)

• Here’s our completed full adder.



3.6 Combinational Circuits (7 of 12)

• Just as we combined half adders to make a full 
adder, full adders can connected in series.

• The carry bit “ripples” from one adder to the 
next; hence, this configuration is called a 
ripple-carry adder.

Today’s systems employ more efficient adders.   



3.6 Combinational Circuits (8 of 12)

• Decoders are another important type of 
combinational circuit.

• Among other things, they are useful in selecting a 
memory location according a binary value placed 
on the address lines of a memory bus.

• Address decoders with n inputs can select any of 2n 

locations. 

This is a block 

diagram for a 

decoder.   



3.6 Combinational Circuits (9 of 12)

• This is what a 2-to-4 decoder looks like on 
the inside.

If x = 0 and y = 1, 

which output line 

is enabled?   

xy



3.6 Combinational Circuits (10 of 12)

• A multiplexer does just the 
opposite of a decoder.

• It selects a single output from 
several inputs.

• The particular input chosen for 
output is determined by the 
value of the multiplexer’s 
control lines.

• To be able to select among n
inputs, log2n control lines are 
needed. 

• This is a block diagram for a 
multiplexer.   



3.6 Combinational Circuits (11 of 12)

• This is what a 4-to-1 multiplexer looks like 
on the inside.  

If S0 = 1 and S1 = 0, 

which input is 

transferred to the 

output?   



3.6 Combinational Circuits (12 of 12)

• This shifter moves 
the bits of a nibble 
one position to the 
left or right.  

If S = 0, in which 

direction do the 

input bits shift?   



3.7 Sequential Circuits (1 of 30)

• Combinational logic circuits are perfect for 
situations when we require the immediate 
application of a Boolean function to a set of inputs. 

• There are other times, however, when we need a 
circuit to change its value with consideration to its 
current state as well as its inputs.
– These circuits have to “remember” their current state.

• Sequential logic circuits provide this functionality 
for us. 



3.7 Sequential Circuits (2 of 30)

• As the name implies, sequential logic circuits 
require a means by which events can be sequenced. 

• State changes are controlled by clocks.
– A “clock” is a special circuit that sends electrical pulses 

through a circuit.

• Clocks produce electrical waveforms such as the 
one shown below.



3.7 Sequential Circuits (3 of 30)

• State changes occur in sequential circuits 
only when the clock ticks. 

• Circuits can change state on the rising 
edge, falling edge, or when the clock pulse 
reaches its highest voltage.



3.7 Sequential Circuits (4 of 30)

• Circuits that change state on the rising edge, 
or  falling edge of the clock pulse are called 
edge-triggered.

• Level-triggered circuits change state when the 
clock voltage reaches its highest or lowest 
level.



3.7 Sequential Circuits (5 of 30)

• To retain their state values, sequential circuits rely 
on feedback.

• Feedback in digital circuits occurs when an output is 
looped back to the input.

• A simple example of this concept is shown below.
– If Q is 0 it will always be 0, if it is 1, it will always be 1. 

Why?



3.7 Sequential Circuits (6 of 30)

• You can see how feedback works by 
examining the most basic sequential logic 
components, the SR flip-flop.

– The “SR” stands for set/reset.

• The internals of an SR flip-flop are shown 
below, along with its block diagram.



3.7 Sequential Circuits (7 of 30)

• The behavior of an SR flip-flop is described 
by a characteristic table.

• Q(t) means the value of the output at time 
t.  Q(t+1) is the value of Q after the next 
clock pulse.



3.7 Sequential Circuits (8 of 30)

• The SR flip-flop actually has 
three inputs: S, R, and its 
current output, Q.

• Thus, we can construct a 
truth table for this circuit, 
as shown at the right.

• Notice the two undefined 
values. When both S and R 
are 1, the SR flip-flop is 
unstable.



3.7 Sequential Circuits (9 of 30)

• If we can be sure that the inputs 
to an SR flip-flop will never both 
be 1, we will never have an 
unstable circuit. This may not 
always be the case.

• The SR flip-flop can be modified 
to provide a stable state when 
both inputs are 1.

• This modified flip-flop is called a 
JK flip-flop, shown at the right.



3.7 Sequential Circuits (10 of 30)

• At the right, we see 
how an SR flip-flop 
can be modified to 
create a JK flip-flop.

• The characteristic 
table indicates that 
the flip-flop is stable 
for all inputs.

Q

Q′



3.7 Sequential Circuits (11 of 30)

• Another modification of 
the SR flip-flop is the D flip-
flop, shown below with its 
characteristic table.

• You will notice that the 
output of the flip-flop 
remains the same during 
subsequent clock pulses. 
The output changes only 
when the value of D 
changes.



3.7 Sequential Circuits (12 of 30)

• The D flip-flop is the fundamental circuit of 
computer memory. 

– D flip-flops are usually illustrated using the 
block diagram shown below.

• The characteristic table for the D flip-flop is 
shown at the right.



3.7 Sequential Circuits (13 of 30)

• The behavior of sequential circuits can be expressed 
using characteristic tables or finite state machines 
(FSMs).
– FSMs consist of a set of nodes that hold the states of the 

machine and a set of arcs that connect the states.

• Moore and Mealy machines are two types of FSMs that 
are equivalent.
– They differ only in how they express the outputs of the 

machine.

• Moore machines place outputs on each node, while 
Mealy machines present their outputs on the 
transitions. 



3.7 Sequential Circuits (14 of 30)

• The behavior of a JK flop-flop is depicted below 

by a Moore machine (left) and a Mealy machine 

(right).



3.7 Sequential Circuits (15 of 30)

• Although the behavior of Moore and Mealy 
machines is identical, their 
implementations differ.

• This is our Moore machine.



3.7 Sequential Circuits (16 of 30)

• Although the behavior of Moore and Mealy 
machines is identical, their 
implementations differ.

• This is our Mealy machine



3.7 Sequential Circuits (17 of 30)

• It is difficult to express the complexities of actual 
implementations using only Moore and Mealy 
machines.
– For one thing, they do not address the intricacies of timing 

very well.
– Secondly, it is often the case that an interaction of 

numerous signals is required to advance a machine from 
one state to the next.

• For these reasons, Christopher Clare invented the 
algorithmic state machine (ASM).

• The next slide illustrates the components of an ASM.   



3.7 Sequential Circuits (18 of 30)



3.7 Sequential Circuits (19 of 30)

• This is an ASM for a microwave oven.



3.7 Sequential Circuits (20 of 30)

• Sequential circuits are used anytime that we 
have a “stateful” application.
– A stateful application is one where the next state 

of the machine depends on the current state of 
the machine and the input.

• A stateful application requires both 
combinational and sequential logic.

• The following slides provide several examples 
of circuits that fall into this category.

• Can you think of others?



3.7 Sequential Circuits (21 of 30)

• This illustration 
shows a 4-bit 
register consisting 
of D flip-flops. You 
will usually see its 
block diagram 
(below) instead.

A larger memory configuration 

is shown on the next slide.



3.7 Sequential Circuits (22 of 30)



3.7 Sequential Circuits (23 of 30)

• A binary counter is 
another example of a 
sequential circuit.

• The low-order bit is 
complemented at each 
clock pulse.

• Whenever it changes from 
0 to 1, the next bit is 
complemented, and so on 
through the other flip-
flops.



3.7 Sequential Circuits (24 of 30)

• Convolutional coding and decoding requires 
sequential circuits.

• One important convolutional code is the (2,1) 
convolutional code that underlies the PRML code 
that is briefly described at the end of Chapter 2.

• A (2, 1) convolutional code is so named because 
two symbols are output for every one symbol input.

• A convolutional encoder for PRML with its 
characteristic table is shown on the next slide.



3.7 Sequential Circuits (25 of 30)



• This is the Mealy machine for our encoder.

3.7 Sequential Circuits (26 of 30)



F(1101 0010) = 11 01 01 00 10 11 11 10.

3.7 Sequential Circuits (27 of 30)

• The fact that there is a 
limited set of possible 
state transitions in the 
encoding process is crucial 
to the error correcting 
capabilities of PRML.

• You can see by our Mealy 
machine for encoding 
that:



F(11 01 01 00 10 11 11 10) = 1101 0010

3.7 Sequential Circuits (28 of 30)

• The decoding of our 
code is provided by 
inverting the inputs 
and outputs of the 
Mealy machine for the 
encoding process.

• You can see by our 
Mealy machine for 
decoding that:



F(00 10 11 11) = 1001

3.7 Sequential Circuits (29 of 30)

• Yet another way of 
looking at the decoding 
process is through a 
lattice diagram.

• Here we have plotted 
the state transitions 
based on the input (top) 
and showing the output 
at the bottom for the 
string 00 10 11 11.



F(00 10 11 11) = 1001

3.7 Sequential Circuits (30 of 30)

• Suppose we receive 
the erroneous string: 
10 10 11 11.

• Here we have plotted 
the accumulated errors  
based on the allowable 
transitions.

• The path of least error 
outputs 1001, thus 
1001 is the string of 
maximum likelihood.



3.8 Designing Circuits (1 of 3)

• We have seen digital circuits from two points of 
view: digital analysis and digital synthesis.
– Digital analysis explores the relationship between a 

circuits inputs and its outputs.
– Digital synthesis creates logic diagrams using the 

values specified in a truth table.

• Digital systems designers must also be mindful of 
the physical behaviors of circuits to include minute 
propagation delays that occur between the time 
when a circuit’s inputs are energized and when the 
output is accurate and stable.



3.8 Designing Circuits (2 of 3)

• Digital designers rely on specialized software, 
such as VHDL and Verilog, to create efficient 
circuits.
– Thus, software is an enabler for the construction 

of better hardware.

• Of course, software is in reality a collection of 
algorithms that could just as well be 
implemented in hardware.
– Recall the Principle of Equivalence of Hardware 

and Software.



3.8 Designing Circuits (3 of 3)

• When we need to implement a simple, specialized 
algorithm and its execution speed must be as fast 
as possible, a hardware solution is often preferred.

• This is the idea behind embedded systems, which 
are small special-purpose computers that we find in 
many everyday things.

• Embedded systems require special programming 
that demands an understanding of the operation of 
digital circuits, the basics of which you have learned 
in this chapter.



Conclusion (1 of 3)

• Computers are implementations of Boolean 
logic.

• Boolean functions are completely described by 
truth tables.

• Logic gates are small circuits that implement 
Boolean operators. 

• The basic gates are AND, OR, and NOT.
– The XOR gate is very useful in parity checkers and 

adders.

• The “universal gates” are NOR, and NAND.



Conclusion (2 of 3)

• Computer circuits consist of combinational 
logic circuits and sequential logic circuits.

• Combinational circuits produce outputs 
(almost) immediately when their inputs 
change.

• Sequential circuits require clocks to control 
their changes of state.

• The basic sequential circuit unit is the flip-flop: 
The behaviors of the SR, JK, and D flip-flops 
are the most important to know.



Conclusion (3 of 3)

• The behavior of sequential circuits can be 
expressed using characteristic tables or through 
various finite state machines.

• Moore and Mealy machines are two finite state 
machines that model high-level circuit behavior.

• Algorithmic state machines are better than Moore 
and Mealy machines at expressing timing and 
complex signal interactions.

• Examples of sequential circuits include memory, 
counters, and Viterbi encoders and decoders.


