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Quick review of last lecture

e Benchmarking
— Clock rate, MIPS, and FLOPS

— Synthetic Benchmarks: Whetstone, Linpack, and
Dhrystone

— Standard Performance Evaluation Corporation (SPEC)
benchmarks

— Transaction Performance Council (TPC) benchmarks
— System simulation
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11.5 CPU Performance Optimization
(1 of 15)

e CPU optimization includes many of the topics that
have been covered in preceding chapters.

— CPU optimization includes topics such as pipelining,
parallel execution units, and integrated floating-point

units.
e We have not yet explored two important CPU

optimization topics: Branch optimization and user
code optimization.

e Both of these can affect performance in dramatic
ways.
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11.5 CPU Performance Optimization
(2 of 15): Branch Optimization

e We know that pipelines offer significant execution
speedup when the pipeline is kept full.

e Conditional branch instructions are a type of pipeline
hazard that can result in flushing the pipeline.

— Other hazards are include conflicts, data dependencies, and
memory access delays.

e Delayed branching offers one way of dealing with
branch hazards.

e With delayed branching, one or more instructions
following a conditional branch are sent down the
pipeline regardless of the outcome of the statement.
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11.5 CPU Performance Optimization
(3 of 15)

e The responsibility for setting up delayed branching most
often rests with the compiler.

e |t can choose the instruction to place in the delay slotin a
number of ways.

e The first choice is a useful instruction that executes
regardless of whether the branch occurs.

e Other possibilities include instructions that execute if the
branch occurs, but do no harm if the branch does not
oCcCur.

e Delayed branching has the advantage of low hardware
cost.
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11.5 CPU Performance Optimization
(4 of 15)

e Branch prediction is another approach to
minimizing branch penalties.

e Branch prediction tries to avoid pipeline stalls by
guessing the next instruction in the instruction
stream.

— This is called speculative execution.

e Branch prediction techniques vary according to the
type of branching. If/then/else, loop control, and
subroutine branching all have different execution
profiles.
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11.5 CPU Performance Optimization
(5 of 15)

e There are various ways in which a
prediction can be made:
— Fixed predictions do not change over time.

— True predictions result in the branch being
always taken or never taken.

— Dynamic prediction uses historical information
about the branch and its outcomes.

— Static prediction does not use any history.
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11.5 CPU Performance Optimization
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(6 of 15)

nen fixed prediction assumes that a branch is not

ken, the normal sequential path of the program is
cen.

However, processing is done in parallel in case the

anch occurs.

If the prediction is correct, the preprocessing

information is deleted.

If the prediction is incorrect, the speculative

processing is deleted and the preprocessing
information is used to continue on the correct path.
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11.5 CPU Performance Optimization
(7 of 15)

e When fixed prediction assumes that a branch is
always taken, state information is saved before
the speculative processing begins.

e |f the prediction is correct, the saved information
is deleted.

e |f the prediction is incorrect, the speculative
processing is deleted and the saved information is
restored allowing execution to continue on the
correct path.
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11.5 CPU Performance Optimization
(8 of 15)

e Dynamic prediction employs a high-speed branch
prediction buffer to combine an instruction with its
history.

e The buffer is indexed by the lower portion of the
address of the branch instruction that also contains
extra bits indicating whether the branch was recently
taken.

— One-bit dynamic prediction uses a single bit to indicate
whether the last occurrence of the branch was taken.

— Two-bit branch prediction retains the history of the
previous to occurrences of the branch along with a
probability of the branch being taken.
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11.5 CPU Performance Optimization
(9 of 15)

e The earliest branch prediction implementations
used static branch prediction.

e Most newer processors (including the Pentium,
PowerPC, UltraSparc, and Motorola 68060) use
two-bit dynamic branch prediction.

e Some superscalar architectures include branch
prediction as a user option.

e Many systems implement branch prediction in
specialized circuits for maximum throughput.
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11.5 CPU Performance Optimization
(10 of 15): Use of Good Algorithms

e The best hardware and compilers will never equal
the abilities of a human being who has mastered
the science of effective algorithm and coding
design.

e People can see an algorithm in the context of the
machine it will run on.

— For example a good programmer will access a stored
column-major array in column-major order.

e We end this section by offering some tips to help
you achieve optimal program performance.
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11.5 CPU Performance Optimization
(11 of 15)

e QOperation counting can enhance program
performance.

e With this method, you count the number of
instruction types executed in a loop then determine
the number of machine cycles for each instruction.

e The idea is to provide the best mix of instruction
types for a particular architecture.

e Nested loops provide a number of interesting
optimization opportunities.
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11.5 CPU Performance Optimization
(12 of 15)

e [oop unrolling is the process of expanding a loop so
that each new iteration contains several of the original
operations, thus performing more computations per
loop iteration.

e For example:

for (i = 1; i <= 30; i++)
a[i] = a[i] + b[1] * c;

e becomes

for (1 = 1; i <= 30; i+=3)
{ a[1] = a[i] + b[1i] * c;
af[i+1] a[i+l] + b[i+l1l] * c;
af[i+2] a[i+2] + b[i+2] * c; }
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11.5 CPU Performance Optimization
(13 of 15)

e [oop fusion combines loops that use the same data

elements, possibly improving cache performance. For
example:

for (i = 0; i < N; i++)
C[i] = A[i] + B[i];

for (i = 0; i < N; i++)
D[i] = E[i] + C[1i];

o becomes

for (1 = 0; i < N; i++)
{ C[i] A[i] + B[i]~
D[i] E[i] + C[i]; }
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11.5 CPU Performance Optimization

(14 of 15)
For example:
* Loop fission splits large for (i = 1; i < N+L; it++)
loops into smaller ones { if (i==1)
to reduce data A[i] = 0;
dependencies and else if (1 == N)
resource conflicts Alll = N;
' else A[i] = A[i] + 8; }
e Aloop fission technique
: Becomes:
known as loop peeling
removes the beginning | 2[11 = °" | |
and ending loop Sl LT I
Ali] = [1] + 8;
statements. A[N] = N;
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11.5 CPU Performance Optimization
(15 of 15)

The text lists a number of rules of thumb for
getting the most out of program performance.

e Optimization efforts pay the biggest dividends
when they are applied to code segments that
are executed the most frequently.

e |n short, try to make the common cases fast.
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11.6 Disk Performance (1 of 23)
1. Understanding the problem

Optimal disk performance is critical to system
throughput.

Disk drives are the slowest memory component, with
the fastest access times one million times longer than
main memory access times.

A slow disk system can choke transaction processing
and drag down the performance of all programs when
virtual memory paging is involved.

Low CPU utilization can actually indicate a problem in
the /0 subsystem, because the CPU spends more time
waiting than running.
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