
Chapter 11

Performance
Measurement and

Analysis (A)

This is the first

lecture of

Chapter 11

Objectives

• Understand the ways in which computer
performance is measured.

• Be able to describe common benchmarks
and their limitations.

• Become familiar with factors that
contribute to improvements in CPU and
disk performance.

11.1 Introduction

• The ideas presented in this chapter will help you to
understand various measurements of computer
performance.

• You will be able to use these ideas when you are
purchasing a large system, or trying to improve the
performance of an existing system.

• We will discuss a number of factors that affect
system performance, including some tips that you
can use to improve the performance of programs.

11.2 Computer Performance
Equations (1 of 3)

• The basic computer performance equation has
been useful in our discussions of RISC versus CISC:

• To achieve better performance, RISC machines
reduce the number of cycles per instruction, and
CISC machines reduce the number of instructions
per program.

11.2 Computer Performance
Equations (2 of 3)

• We have also learned that CPU efficiency is not
the sole factor in overall system performance.
Memory and I/O performance are also important.

• Amdahl’s Law tells us that the system
performance gain realized from the speedup of
one component depends not only on the speedup
of the component itself, but also on the fraction
of work done by the component:

11.2 Computer Performance
Equations (3 of 3)

• In short, using Amdahl’s Law we know that we
need to make the common case fast.

• So if our system is CPU bound, we want to make
the CPU faster.

• A memory bound system calls for improvements
in memory management.

• The performance of an I/O bound system will
improve with an upgrade to the I/O system.

Of course, fixing a performance problem in one part of the

system can expose a weakness in another part of the system!

Quantitative Principles of Computer Design

Make the common case fast

tenhancemen theusing timeExecution

tenhancemen theusing without timeExecution
 Speedup=

Amdahl’s Law
The performance improvement to be gained from using some fast mode

of execution is limited by the fraction of the time the fast mode can be used.

Benhanced

B

enhanced

Time

Time

Speedup

=

BA

B

enhanced

TimeTime

Time

Fraction

+
=

enhanced

enhanced
enhanced

B

Benhanced

BA

B

BA

A

BenhancedA

BA

new

old

Speedup

Fraction
Fraction

Time

Time

TimeTime

Time

TimeTime

Time

TimeTime

TimeTime

Time

Time
Speedup

+−

=


+

+
+

=

+

+
==

)1(

1

1

Part A
Part B

An Example

A processor contains a Floating Point

(FP) unit, which, in turn, contains an

FP Square Root (SQR) instruction.

For a typical program,

Frequency of FPSQR = 20%

Frequency of FP = 50%

Two improvement selections:

(1) SpeedupSQR=10. (2) SpeedupFP=2

22.1
82.0

1

10

2.0
)2.01(

1
)1(=

+−

=Speedup

33.1
75.0

1

2

5.0
)5.01(

1
)2(=

+−

=Speedup

Processor

FP

FPSQR

Improvement

selection (2) is

better than

Improvement

selection (1).

Parallel Speedup

• In the context of parallel processing,

speedup can be computed by Parallel

Sequential

T

T
 Speedup=

• Amdahl’s law, for p processors and

a fraction f of unparallelizable code:

3.5

10

9.0
1.0

1
 Speedup 

+

=

• For example, if f = 10% of the operations must be performed

sequentially, then speedup can be no greater than 10 regardless

of how many processors are used:

10
9.0

1.0

1
 Speedup =


+

=

p

f
f

−
+

=
1

1
 Speedup

P = 10 processors P =  processors

The CPU Performance Equation

rateClock

CyclesClock
 periodClock cyclesClock time ==CPU

)(count n Instructio

cyclesClock
)(n instructioper cyclesClock

IC
CPI =

rateClock
 timecycleClock time

ICCPI
ICCPICPU


==

• Clock cycle time

(clock period)

• Clock frequency

(clock rate)

latch, or

register
combinational

logic

Clock cycle time timecycleClock

1
 rateClock =

Three characteristics

CPU time = Seconds = Instructions x Cycles x Seconds

Program Program Instruction Cycle

Inst Count CPI Clock period

Program X

Compiler X (X)

Inst. Set. X X (X)

Organization X X

Technology X

Average Clock Cycles per Instruction


=

=
n

i

ii ICCPICPU
1

 cyclesclock

periodClock times
1











= 

=

n

i

ii ICCPICPU




=

= 







=



=
n

i

i
i

n

i

ii

CPI
IC

IC

IC

ICCPI

CPI
1

1

Example: Calculating CPI bottom up

Op Freq CPIi Freq*CPIi (% Time)

ALU 50% 1 .5 (33%)

Load 20% 2 .4 (27%)

Store 10% 2 .2 (13%)

Branch 20% 2 .4 (27%)

CPI = 1.5

Typical mix of
instruction types
in program

An Example
Measurements have shown that for an unpipelined machine A, the instruction

mix and the average Clock cycle Per Instruction (CPI) are as shown in the

following table.

Operation Frequency CPI

ALU instruction 40% 4

Load/Store 40% 5

Branch 20% 4

One improvement on the memory system can reduce the CPI for loads and

stores to 3. This improvement, however, leads to a 5% increase in the clock

cycle time. Is this improvement useful?

CPU timeold = (40%4+40%5+20%4)ICCycle time = 4.4 ICCycle time

CPU timenew = (40%4+40%3+20%4)IC1.05Cycle time = 3.78ICCycle time

This improvement is useful because it reduces the CPU time.

11.3 Mathematical Preliminaries
(1 of 17)

• Measures of system performance depend upon one’s
point of view.
– A computer user is most often concerned with response

time: How long does it take the system to carry out a task?

– System administrators are usually more concerned with
throughput: How many concurrent tasks can the system
handle before response time is adversely affected?

• These two ideas are related: If a system carries out a
task in k seconds, then its throughput is 1/k of these
tasks per second.

