
Chapter 9

Alternative
Architectures (C)

This is the

third lecture of

Chapter 9

Quick review of last lecture

• Parallel and Multiprocessor Architectures
– Superscalar

• Superpipelining,
• Dynamically issue multiple instructions per clock cycle

– VLIW
– Vector Processors

– Interconnection Networks
• Several different topologies: Complete, star, ring, mesh, …

• Switching networks with 2×2 switches: Omega Network

• Switching networks with crossbar switches

• Blocking vs non-blocking

An 88 Omega Network
In nn Omega Network

• log
2
n stages

• n/2 22 switches

per stage

• Perfect shuffle ISC

The use of 22 switches

Straight Crossover Upper broadcast Lower broadcast

Routing

• a: 011→110

• b: 001→001

9.4 Parallel and Multiprocessor
Architectures (13 of 21)

• Tightly-coupled multiprocessor systems use the
same memory. They are also referred to as shared
memory multiprocessors.

• The processors do not necessarily have to share the
same block of physical memory.

• Each processor can have its own memory, but it
must share it with the other processors.

• Configurations such as these are called distributed
shared memory multiprocessors.

9.4.4 Shared Memory Multiprocessors

• Tightly-coupled
multiprocessor

• Distributed shared
memory multiprocessor

9.4 Parallel and Multiprocessor
Architectures (14 of 21)

• Shared memory MIMD machines can be divided into
two categories based upon how they access memory.

• In uniform memory access (UMA) systems, all memory
accesses take the same amount of time.

• To realize the advantages of a multiprocessor system,
the interconnection network must be fast enough to
support multiple concurrent accesses to memory, or it
will slow down the whole system.

• Thus, the interconnection network limits the number of
processors in a UMA system.

9.4 Parallel and Multiprocessor
Architectures (15 of 21)

• The other category of MIMD machines are the
nonuniform memory access (NUMA) systems.

• While NUMA machines see memory as one contiguous
addressable space, each processor gets its own piece of
it.

• Thus, a processor can access its own memory much
more quickly than it can access memory that is
elsewhere.

• Not only does each processor have its own memory, it
also has its own cache, a configuration that can lead to
cache coherence problems.

9.4 Parallel and Multiprocessor
Architectures (17 of 21)

• When a processor’s cached value is updated
concurrently with the update to memory, we say
that the system uses a write-through cache update
protocol.

• If the write-through with update protocol is used, a
message containing the update is broadcast to all
processors so that they may update their caches.

• If the write-through with invalidate protocol is
used, a broadcast asks all processors to invalidate
the stale cached value.

9.4 Parallel and Multiprocessor
Architectures (18 of 21)

• Write-invalidate uses less bandwidth because it uses the
network only the first time the data is updated, but
retrieval of the fresh data takes longer.

• Write-update creates more message traffic, but all caches
are kept current.

• Another approach is the write-back protocol that delays
an update to memory until the modified cache block must
be replaced.

• At replacement time, the processor writing the cached
value must obtain exclusive rights to the data. When
rights are granted, all other cached copies are invalidated.

9.4 Parallel and Multiprocessor
Architectures (19 of 21)

• Distributed computing is another form of
multiprocessing. However, the term distributed
computing means different things to different people.

• In a sense, all multiprocessor systems are distributed
systems because the processing load is distributed
among processors that work collaboratively.

• The common understanding is that a distributed system
consists of very loosely-coupled processing units.

• Recently, NOWs have been used as distributed systems
to solve large, intractable problems.

9.4.5 Distributed computing

9.4 Parallel and Multiprocessor
Architectures (20 of 21)

• For general-use computing, the details of the network
and the nature of the multiplatform computing should
be transparent to the users of the system.

• Remote procedure calls (RPCs) enable this
transparency. RPCs use resources on remote machines
by invoking procedures that reside and are executed on
the remote machines.

• RPCs are employed by numerous vendors of distributed
computing architectures including the Common Object
Request Broker Architecture (CORBA) and Java’s
Remote Method Invocation (RMI).

9.4 Parallel and Multiprocessor
Architectures (21 of 21)

• Cloud computing is distributed computing to the
extreme.

• It provides services over the Internet through a
collection of loosely-coupled systems.

• In theory, the service consumer has no awareness of
the hardware, or even its location.
– Your services and data may even be located on the same

physical system as that of your business competitor.

– The hardware might even be located in another country.

• Security concerns are a major inhibiting factor for cloud
computing.

9.5 Alternative Parallel
Processing Approaches (1 of 15)

• Some people argue that real breakthroughs in
computational power—breakthroughs that will enable
us to solve today’s intractable problems— will occur
only by abandoning the von Neumann model.

• Numerous efforts are now underway to devise systems
that could change the way that we think about
computers and computation.

• In this section, we will look at three of these: dataflow
computing, neural networks, and systolic processing.

9.5 Alternative Parallel
Processing Approaches (2 of 15)

• Von Neumann machines exhibit sequential control flow: A
linear stream of instructions is fetched from memory, and
they act upon data.

• Program flow changes under the direction of branching
instructions.

• In dataflow computing, program control is directly
controlled by data dependencies.

• There is no program counter or shared storage.

• Data flows continuously and is available to multiple
instructions simultaneously.

9.5.1 Dataflow Computing

9.5 Alternative Parallel
Processing Approaches (3 of 15)

• A data flow graph represents the computation flow in a
dataflow computer.

• Its nodes contain the instructions and its arcs indicate the
data dependencies.

9.5 Alternative Parallel
Processing Approaches (4 of 15)

• When a node has all of the data tokens it needs, it fires,
performing the required operation, and consuming the
token.

• The result is placed on an output arc.

9.5 Alternative Parallel
Processing Approaches (5 of 15)

• A dataflow
program to
calculate N!
and its
corresponding
graph are
shown on the
right.

(initial j <- n; k <- 1

while j > 1 do

new k <- * j;

new j <- j - 1;

return k)

9.5 Alternative Parallel
Processing Approaches (6 of 15)

• The architecture of a dataflow computer consists of
processing elements that communicate with one
another.

• Each processing element has an enabling unit that
sequentially accepts tokens and stores them in
memory.

• If the node to which this token is addressed fires,
the input tokens are extracted from memory and
are combined with the node itself to form an
executable packet.

9.5 Alternative Parallel
Processing Approaches (7 of 15)

• Using the executable packet, the processing element’s
functional unit computes any output values and
combines them with destination addresses to form
more tokens.

• The tokens are then sent back to the enabling unit,
optionally enabling other nodes.

• Because dataflow machines are data driven,
multiprocessor dataflow architectures are not subject
to the cache coherency and contention problems that
plague other multiprocessor systems.

9.5 Alternative Parallel
Processing Approaches (8 of 15)

• Neural network computers consist of a large number of
simple processing elements that individually solve a
small piece of a much larger problem.

• They are particularly useful in dynamic situations that
are an accumulation of previous behavior, and where
an exact algorithmic solution cannot be formulated.

• Like their biological analogues, neural networks can
deal with imprecise, probabilistic information, and
allow for adaptive interactions.

9.5.2 Neural networks

9.5 Alternative Parallel
Processing Approaches (9 of 15)

• Neural network processing elements (PEs) multiply
a set of input values by an adaptable set of weights
to yield a single output value.

• The computation carried out by each PE is
simplistic—almost trivial—when compared to a
traditional microprocessor. Their power lies in their
massively parallel architecture and their ability to
adapt to the dynamics of the problem space.

• Neural networks learn from their environments. A
built-in learning algorithm directs this process.

9.5 Alternative Parallel
Processing Approaches (10 of 15)

• The simplest neural
net PE is the
perceptron.

• Perceptrons are
trainable neurons. A
perceptron produces
a Boolean output
based upon the
values that it
receives from several
inputs.

9.5 Alternative Parallel
Processing Approaches (11 of 15)

• Perceptrons are trainable because the threshold
and input weights are modifiable.

• In this example,

𝑍 = ቊ
𝑡𝑟𝑢𝑒(1), 𝑖𝑓 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑇

𝑓𝑎𝑙𝑠𝑒 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Examples of Perceptrons

𝑍 = 𝑥1 𝑜𝑟 𝑥2

𝑍 = 𝑥1 𝑎𝑛𝑑 𝑥2𝑤1 = 1, 𝑤2= 1, 𝑎𝑛𝑑 𝑇 = 2

𝑍 = ቊ
𝑡𝑟𝑢𝑒(1), 𝑖𝑓 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑇

𝑓𝑎𝑙𝑠𝑒 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤1 = 1, 𝑤2= 1, 𝑎𝑛𝑑 𝑇 = 1

9.5 Alternative Parallel
Processing Approaches (12 of 15)

• Perceptrons are trained by use of supervised or
unsupervised learning.

• Supervised learning assumes prior knowledge of correct
results, which are fed to the neural net during the
training phase. If the output is incorrect, the network
modifies the input weights to produce correct results.

• Unsupervised learning does not provide correct results
during training. The network adapts solely in response
to inputs, learning to recognize patterns and structure
in the input sets.

9.5 Alternative Parallel
Processing Approaches (13 of 15)

• The biggest problem with neural nets is that when they
consist of more than 10 or 20 neurons, it is impossible
to understand how the net is arriving at its results. They
can derive meaning from data that are too complex to
be analyzed by people.
– The U.S. military once used a neural net to try to locate

camouflaged tanks in a series of photographs. It turned out
that the nets were basing their decisions on the cloud cover
instead of the presence or absence of the tanks.

• Despite early setbacks, neural nets are gaining
credibility in sales forecasting, data validation, and
facial recognition.

