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Quick review of last lecture 

• Parallel and Multiprocessor Architectures 
– Superscalar

• Superpipelining, 
• Dynamically issue multiple instructions per clock cycle

– VLIW
– Vector Processors

– Interconnection Networks
• Several different topologies: Complete, star, ring, mesh, …

• Switching networks with 2×2 switches: Omega Network

• Switching networks with crossbar switches

• Blocking vs non-blocking 
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9.4 Parallel and Multiprocessor 
Architectures (13 of 21)

• Tightly-coupled multiprocessor systems use the 
same memory. They are also referred to as shared 
memory multiprocessors.

• The processors do not necessarily have to share the 
same block of physical memory.

• Each processor can have its own memory, but it 
must share it with the other processors.

• Configurations such as these are called distributed 
shared memory multiprocessors.

9.4.4 Shared Memory Multiprocessors



• Tightly-coupled 
multiprocessor



• Distributed shared 
memory multiprocessor



9.4 Parallel and Multiprocessor 
Architectures (14 of 21)

• Shared memory MIMD machines can be divided into 
two categories based upon how they access memory.

• In uniform memory access (UMA) systems, all memory 
accesses take the same amount of time.

• To realize the advantages of a multiprocessor system, 
the interconnection network must be fast enough to 
support multiple concurrent accesses to memory, or it 
will slow down the whole system.

• Thus, the interconnection network limits the number of 
processors in a UMA system.



9.4 Parallel and Multiprocessor 
Architectures (15 of 21)

• The other category of MIMD machines are the 
nonuniform memory access (NUMA) systems.

• While NUMA machines see memory as one contiguous 
addressable space, each processor gets its own piece of 
it.

• Thus, a processor can access its own memory much 
more quickly than it can access memory that is 
elsewhere.

• Not only does each processor have its own memory, it 
also has its own cache, a configuration that can lead to 
cache coherence problems.



9.4 Parallel and Multiprocessor 
Architectures (17 of 21)

• When a processor’s cached value is updated 
concurrently with the update to memory, we say 
that the system uses a write-through cache update 
protocol.

• If the write-through with update protocol is used, a 
message containing the update is broadcast to all 
processors so that they may update their caches.

• If the write-through with invalidate protocol is 
used, a broadcast asks all processors to invalidate 
the stale cached value.  



9.4 Parallel and Multiprocessor 
Architectures (18 of 21)

• Write-invalidate uses less bandwidth because it uses the 
network only the first time the data is updated, but 
retrieval of the fresh data takes longer.

• Write-update creates more message traffic, but all caches 
are kept current.  

• Another approach is the write-back protocol that delays 
an update to memory until the modified cache block must 
be replaced.

• At replacement time, the processor writing the cached 
value must obtain exclusive rights to the data. When 
rights are granted, all other cached copies are invalidated.



9.4 Parallel and Multiprocessor 
Architectures (19 of 21)

• Distributed computing is another form of 
multiprocessing. However, the term distributed 
computing means different things to different people.

• In a sense, all multiprocessor systems are distributed 
systems because the processing load is distributed 
among processors that work collaboratively.

• The common understanding is that a distributed system 
consists of very loosely-coupled processing units.

• Recently, NOWs have been used as distributed systems 
to solve large, intractable problems.

9.4.5 Distributed computing



9.4 Parallel and Multiprocessor 
Architectures (20 of 21)

• For general-use computing, the details of the network 
and the nature of the multiplatform computing should 
be transparent to the users of the system.

• Remote procedure calls (RPCs) enable this 
transparency. RPCs use resources on remote machines 
by invoking procedures that reside and are executed on 
the remote machines.

• RPCs are employed by numerous vendors of distributed 
computing architectures including the Common Object 
Request Broker Architecture (CORBA) and Java’s 
Remote Method Invocation (RMI).



9.4 Parallel and Multiprocessor 
Architectures (21 of 21)

• Cloud computing is distributed computing to the 
extreme.

• It provides services over the Internet through a 
collection of loosely-coupled systems.

• In theory, the service consumer has no awareness of 
the hardware, or even its location.
– Your services and data may even be located on the same 

physical system as that of your business competitor.

– The hardware might even be located in another country.

• Security concerns are a major inhibiting factor for cloud 
computing.



9.5 Alternative Parallel 
Processing Approaches (1 of 15) 

• Some people argue that real breakthroughs in 
computational power—breakthroughs that will enable 
us to solve today’s intractable problems— will occur 
only by abandoning the von Neumann model.

• Numerous efforts are now underway to devise systems 
that could change the way that we think about 
computers and computation.

• In this section, we will look at three of these: dataflow 
computing, neural networks, and systolic processing.



9.5 Alternative Parallel 
Processing Approaches (2 of 15)

• Von Neumann machines exhibit sequential control flow: A 
linear stream of instructions is fetched from memory, and 
they act upon data.

• Program flow changes under the direction of branching 
instructions.

• In dataflow computing, program control is directly 
controlled by data dependencies.

• There is no program counter or shared storage.

• Data flows continuously and is available to multiple 
instructions simultaneously.

9.5.1 Dataflow Computing



9.5 Alternative Parallel 
Processing Approaches (3 of 15)

• A data flow graph represents the computation flow in a 
dataflow computer.

• Its nodes contain the instructions and its arcs indicate the 
data dependencies.



9.5 Alternative Parallel 
Processing Approaches (4 of 15)

• When a node has all of the data tokens it needs, it fires, 
performing the required operation, and consuming the 
token.

• The result is placed on an output arc.



9.5 Alternative Parallel 
Processing Approaches (5 of 15)

• A dataflow 
program to 
calculate N! 
and its 
corresponding 
graph are 
shown on the 
right.

(initial j <- n; k <- 1

while j > 1 do

new k <- * j;

new j <- j - 1;

return k)



9.5 Alternative Parallel 
Processing Approaches (6 of 15)

• The architecture of a dataflow computer consists of 
processing elements that communicate with one 
another.

• Each processing element has an enabling unit that 
sequentially accepts tokens and stores them in 
memory.

• If the node to which this token is addressed fires, 
the input tokens are extracted from memory and 
are combined with the node itself to form an 
executable packet.



9.5 Alternative Parallel 
Processing Approaches (7 of 15)

• Using the executable packet, the processing element’s 
functional unit computes any output values and 
combines them with destination addresses to form 
more tokens.

• The tokens are then sent back to the enabling unit, 
optionally enabling other nodes.

• Because dataflow machines are data driven, 
multiprocessor dataflow architectures are not subject 
to the cache coherency and contention problems that 
plague other multiprocessor systems.



9.5 Alternative Parallel 
Processing Approaches (8 of 15)

• Neural network computers consist of a large number of 
simple processing elements that individually solve a 
small piece of a much larger problem.

• They are particularly useful in dynamic situations that 
are an accumulation of previous behavior, and where 
an exact algorithmic solution cannot be formulated.

• Like their biological analogues, neural networks can 
deal with imprecise, probabilistic information, and 
allow for adaptive interactions.

9.5.2 Neural networks 



9.5 Alternative Parallel 
Processing Approaches (9 of 15)

• Neural network processing elements (PEs) multiply 
a set of input values by an adaptable set of weights 
to yield a single output value.

• The computation carried out by each PE is 
simplistic—almost trivial—when compared to a 
traditional microprocessor. Their power lies in their 
massively parallel architecture and their ability to 
adapt to the dynamics of the problem space.

• Neural networks learn from their environments. A 
built-in learning algorithm directs this process.



9.5 Alternative Parallel 
Processing Approaches (10 of 15)

• The simplest neural 
net PE is the 
perceptron.

• Perceptrons are 
trainable neurons. A 
perceptron produces 
a Boolean output 
based upon the 
values that it 
receives from several 
inputs.



9.5 Alternative Parallel 
Processing Approaches (11 of 15)

• Perceptrons are trainable because the threshold 
and input weights are modifiable.

• In this example,

𝑍 = ቊ
𝑡𝑟𝑢𝑒(1), 𝑖𝑓 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑇

𝑓𝑎𝑙𝑠𝑒 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Examples of Perceptrons

𝑍 = 𝑥1 𝑜𝑟 𝑥2

𝑍 = 𝑥1 𝑎𝑛𝑑 𝑥2𝑤1 = 1, 𝑤2= 1, 𝑎𝑛𝑑 𝑇 = 2

𝑍 = ቊ
𝑡𝑟𝑢𝑒(1), 𝑖𝑓 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 ≥ 𝑇

𝑓𝑎𝑙𝑠𝑒 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤1 = 1, 𝑤2= 1, 𝑎𝑛𝑑 𝑇 = 1    



9.5 Alternative Parallel 
Processing Approaches (12 of 15)

• Perceptrons are trained by use of supervised or 
unsupervised learning.

• Supervised learning assumes prior knowledge of correct 
results, which are fed to the neural net during the 
training phase. If the output is incorrect, the network 
modifies the input weights to produce correct results.

• Unsupervised learning does not provide correct results 
during training. The network adapts solely in response 
to inputs, learning to recognize patterns and structure 
in the input sets.



9.5 Alternative Parallel 
Processing Approaches (13 of 15)

• The biggest problem with neural nets is that when they 
consist of more than 10 or 20 neurons, it is impossible 
to understand how the net is arriving at its results. They 
can derive meaning from data that are too complex to 
be analyzed by people.
– The U.S. military once used a neural net to try to locate 

camouflaged tanks in a series of photographs. It turned out 
that the nets were basing their decisions on the cloud cover 
instead of the presence or absence of the tanks.

• Despite early setbacks, neural nets are gaining 
credibility in sales forecasting, data validation, and 
facial recognition.


