
Chapter 11
Performance 

Measurement and 
Analysis



Objectives

• Understand the ways in which computer 
performance is measured.

• Be able to describe common benchmarks 
and their limitations.

• Become familiar with factors that 
contribute to improvements in CPU and 
disk performance.



11.1 Introduction

• The ideas presented in this chapter will help you to 
understand various measurements of computer 
performance.

• You will be able to use these ideas when you are 
purchasing a large system, or trying to improve the 
performance of an existing system.

• We will discuss a number of factors that affect 
system performance, including some tips that you 
can use to improve the performance of programs.



11.2 Computer Performance 
Equations (1 of 3)

• The basic computer performance equation has 
been useful in our discussions of RISC versus 
CISC:

• To achieve better performance, RISC machines 
reduce the number of cycles per instruction, 
and CISC machines reduce the number of 
instructions per program.



11.2 Computer Performance 
Equations (2 of 3) 

• We have also learned that CPU efficiency is 
not the sole factor in overall system 
performance.  Memory and I/O performance 
are also important.

• Amdahl’s Law tells us that the system 
performance gain realized from the speedup 
of one component depends not only on the 
speedup of the component itself, but also on 
the fraction of work done by the component:



11.2 Computer Performance 
Equations (3 of 3)

• In short, using Amdahl’s Law we know that we 
need to make the common case fast.

• So if our system is CPU bound, we want to 
make the CPU faster.

• A memory bound system calls for 
improvements in memory management.

• The performance of an I/O bound system will 
improve with an upgrade to the I/O system.

Of course, fixing a performance problem in one part of the 
system can expose a weakness in another part of the system! 



11.3 Mathematical Preliminaries 
(1 of 17)

• Measures of system performance depend upon 
one’s point of view.
– A computer user is most often concerned with 

response time: How long does it take the system to 
carry out a task?

– System administrators are usually more concerned 
with throughput: How many concurrent tasks can the 
system handle before response time is adversely 
affected?

• These two ideas are related: If a system carries out 
a task in k seconds, then its throughput is 1/k of 
these tasks per second.



11.3 Mathematical Preliminaries
(2 of 17)

• In comparing the performance of two systems, we 
measure the time that it takes for each system to 
do the same amount of work.

• Specifically, if System A and System B run the same 
program, System A is n times as fast as System B if:

• System A is x% faster than System B if:



11.3 Mathematical Preliminaries
(3 of 17)

• Suppose we have two racecars that have just 
completed a 10 mile race. Car A finished in 3 
minutes, and Car B finished in 4 minutes. 
Using our formulas, Car A is 1.33 times faster 
than Car B, and Car A is also 33% faster than 
Car B:



11.3 Mathematical Preliminaries
(4 of 17)

• When we are evaluating system performance 
we are most interested in its expected 
performance under a given workload.

• We use statistical tools that are measures of 
central tendency.

• The one with which everyone is most familiar 
is the arithmetic mean (or average), given by:



11.3 Mathematical Preliminaries
(5 of 17)

• The arithmetic mean can be misleading if 
the data are skewed or scattered.
– Consider the execution times given in the table 

below. The performance differences are 
hidden by the simple average.



11.3 Mathematical Preliminaries 
(6 of 17)

• If execution frequencies 
(expected workloads) are 
known, a weighted 
average can be revealing.
– The weighted average for 

System A is: 
• 50  0.5 + 200  0.3 + 250 

0.1 + 400  0.05 + 5000 
0.05 = 380.



11.3 Mathematical Preliminaries
(7 of 17)

• However, workloads can change over time.
– A system optimized for one workload may 

perform poorly when the workload changes, as 
illustrated below.



11.3 Mathematical Preliminaries 
(8 of 17)

• When comparing the relative performance of two 
or more systems, the geometric mean is the 
preferred measure of central tendency. 
– It is the nth root of the product of n measurements.

• Unlike the arithmetic means, the geometric mean 
does not give us a real expectation of system 
performance. It serves only as a tool for 
comparison.



11.3 Mathematical Preliminaries
(9 of 17)

• The geometric mean is often uses 
normalized ratios between a system under 
test and a reference machine.
– We have performed the calculation in the table 

below.



11.3 Mathematical Preliminaries
(10 of 17)

• When another system is used for a 
reference machine, we get a different set 
of numbers.



11.3 Mathematical Preliminaries
(11 of 17)

• The real usefulness of the normalized geometric 
mean is that no matter which system is used as a 
reference, the ratio of the geometric means is 
consistent.

• This is to say that the ratio of the geometric means 
for System A to System B, System B to System C, 
and System A to System C is the same no matter 
which machine is the reference machine.

• Using the results that we got when using System B 
and System C as reference machines we find that 
1.6733/1 = 2.4258/1.4497



11.3 Mathematical Preliminaries 
(12 of 17)

• The inherent problem with using the geometric mean 
to demonstrate machine performance is that all 
execution times contribute equally to the result.

• So shortening the execution time of a small program by 
10% has the same effect as shortening the execution 
time of a large program by 10%.
– Shorter programs are generally easier to optimize, but in 

the real world, we want to shorten the execution time of 
longer programs.

• Also, if the geometric mean is not proportionate. A 
system giving a geometric mean 50% smaller than 
another is not necessarily twice as fast!



11.3 Mathematical Preliminaries
(13 of 17)

• The harmonic mean provides us with a way to 
compare execution times that are expressed as a 
rate.

• The harmonic mean allows us to form a 
mathematical expectation of throughput, and to 
compare the relative throughput of systems and 
system components.

• To find the harmonic mean, we add the reciprocals 
of the rates and divide them into the number of 
rates:

H = n  (1/x1+1/x2+1/x3+ . . . + 1/xn)



11.3 Mathematical Preliminaries
(14 of 17)

• The harmonic mean holds two advantages over the 
geometric mean.

• First, it is a suitable predictor of machine behavior.
– So it is useful for more than simply comparing 

performance.
• Second, the slowest rates have the greatest 

influence on the result, so improving the slowest 
performance—usually what we want to do—results 
in better performance.

• The main disadvantage is that the harmonic mean 
is sensitive to the choice of a reference machine.



11.3 Mathematical Preliminaries 
(15 of 17)

• This chart summarizes when the use of 
each of the performance means is 
appropriate.



11.3 Mathematical Preliminaries
(16 of 17)

• The objective assessment of computer performance 
is most critical when deciding which one to buy.
– For enterprise-level systems, this process is 

complicated, and the consequences of a bad decision 
are grave.

• Unfortunately, computer sales are as much 
dependent on good marketing as on good 
performance.

• The wary buyer will understand how objective 
performance data can be slanted to the advantage 
of anyone giving a sales pitch.



11.3 Mathematical Preliminaries
(17 of 17)

• The most common deceptive practices include:
– Selective statistics: Citing only favorable results while 

omitting others.
– Citing only peak performance numbers while ignoring 

the average case.
– Vagueness in the use of words like “almost,” “nearly,” 

“more,” and “less,” in comparing performance data.
– The use of inappropriate statistics or “comparing 

apples to oranges.”
– Implying that you should buy a particular system 

because “everyone” is buying similar systems.

Many examples can be found in business and trade journal ads.



11.4 Benchmarking (1 of 12)

• Performance benchmarking is the science of 
making objective assessments concerning the 
performance of one system over another.

• Price-performance ratios can be derived from 
standard benchmarks.

• The troublesome issue is that there is no 
definitive benchmark that can tell you which 
system will run your applications the fastest 
(using the least wall clock time) for the least 
amount of money.



11.4 Benchmarking (2 of 12)

• Many people erroneously equate CPU speed with 
performance.

• Measures of CPU speed include cycle time (MHz, and 
GHz) and millions of instructions per second (MIPS).

• Saying that System A is faster than System B because 
System A runs at 1.4GHz and System B runs at 900MHz 
is valid only when the ISAs of Systems A and B are 
identical.
– With different ISAs, it is possible that both of these systems 

could obtain identical results within the same amount of 
wall clock time.



11.4 Benchmarking (3 of 12)

• In an effort to describe performance independent of 
clock speed and ISAs, a number of synthetic 
benchmarks have been attempted over the years.

• Synthetic benchmarks are programs that serve no 
purpose except to produce performance numbers.

• The earliest synthetic benchmarks, Whetstone, 
Dhrystone, and Linpack (to name only a few) were 
relatively small programs that were easy to optimize.
– This fact limited their usefulness from the outset.

• These programs are much too small to be useful in 
evaluating the performance of today’s systems.



11.4 Benchmarking (4 of 12)

• In 1988 the Standard Performance Evaluation 
Corporation (SPEC) was formed to address the need 
for objective benchmarks.

• SPEC produces benchmark suites for various classes 
of computers and computer applications.

• Their most widely known benchmark suite is the 
SPEC CPU benchmark.

• The SPEC CPU2017 benchmark suit has a total of 43 
benchmarks that are organized info four suites, two 
for integers and two for floating point numbers.



11.4 Benchmarking (5 of 12)

• The SPEC benchmarks basically consist of a 
collection of kernel programs.

• These are programs that carry out the core 
processes involved in solving a particular 
problem. 
– Activities that do not contribute to solving the 

problem, such as I/O are removed.
• A list of these programs can be found in Table 

11.7 on Pages 601–602.



11.4 Benchmarking (6 of 12)

• On most systems, more than two 24 hour days are 
required to run the SPEC CPU benchmark suite.

• Upon completion, the execution time for each 
kernel is divided by the run time for the same 
kernel on a Sun Ultra Enterprise 2 workstation.

• The final result is the geometric mean of all of the 
run times.

• Manufacturers may report two sets of numbers: 
The peak and base numbers are the results with 
and without compiler optimization flags, 
respectively. 



11.4 Benchmarking (7 of 12)

• The SPEC CPU benchmark evaluates only CPU 
performance.

• When the performance of the entire system under 
high transaction loads is a greater concern, the 
Transaction Performance Council (TPC) benchmarks 
are more suitable.

• The current version of this suite is the TPC-C 
benchmark.

• TPC-C models the transactions typical of a 
warehousing and distribution business using 
terminal emulation software. 



11.4 Benchmarking (8 of 12)

• The TPC-C metric is the number of new 
warehouse order transactions per minute 
(tpmC), while a mix of other transactions is 
concurrently running on the system. 

• The tpmC result is divided by the total cost of 
the configuration tested to give a price-
performance ratio.

• The price of the system includes all hardware, 
software, and maintenance fees that the 
customer would expect to pay.



11.4 Benchmarking (9 of 12)

• The Transaction Performance Council has also 
devised benchmarks for decision support systems 
(used for applications such as data mining) and for 
Web-based e-commerce systems.

• For all of the TPC benchmarks, the systems tested 
must be available for general sale at the time of the 
test and at the prices cited in a full disclosure 
report.

• Results of the tests are audited by an independent 
auditing firm that has been certified by the TPC.



11.4 Benchmarking (10 of 12)

• TPC benchmarks are a kind of simulation tool.
• They can be used to optimize system performance 

under varying conditions that occur rarely under 
normal conditions.

• Other kinds of simulation tools can be devised to 
assess performance of an existing system, or to 
model the performance of systems that do not yet 
exist.

• One of the greatest challenges in creation of a 
system simulation tool is in coming up with a 
realistic workload.



11.4 Benchmarking (11 of 12)

• To determine the workload for a particular system 
component, system traces are sometimes used.

• Traces are gathered by using hardware or software 
probes that collect detailed information concerning 
the activity of a component of interest.

• Because of the enormous amount of detailed 
information collected by probes, they are usually 
engaged for only a few seconds.

• Several trace runs may be required to obtain 
statistically useful system information.



11.4 Benchmarking (12 of 12)

• Devising a good simulator requires that one keep a 
clear focus as to the purpose of the simulator.

• A model that is too detailed is costly and time-
consuming to write.

• Conversely, it is of little use to create a simulator 
that is so simplistic that it ignores important details 
of the system being  modeled.

• A simulator should be validated to show that it is 
achieving the goal that it set out to do: A simple 
simulator is easier to validate than a complex one.



11.5 CPU Performance Optimization 
(1 of 15)

• CPU optimization includes many of the topics 
that have been covered in preceding chapters.
– CPU optimization includes topics such as 

pipelining, parallel execution units, and integrated 
floating-point units.

• We have not yet explored two important CPU 
optimization topics: Branch optimization and 
user code optimization.

• Both of these can affect performance in 
dramatic ways.



11.5 CPU Performance Optimization 
(2 of 15)

• We know that pipelines offer significant execution 
speedup when the pipeline is kept full.

• Conditional branch instructions are a type of pipeline 
hazard that can result in flushing the pipeline.
– Other hazards are include conflicts, data dependencies, and 

memory access delays.
• Delayed branching offers one way of dealing with 

branch hazards.
• With delayed branching, one or more instructions 

following a conditional branch are sent down the 
pipeline regardless of the outcome of the statement.



11.5 CPU Performance Optimization 
(3 of 15)

• The responsibility for setting up delayed branching 
most often rests with the compiler.

• It can choose the instruction to place in the delay 
slot in a number of ways.

• The first choice is a useful instruction that executes 
regardless of whether the branch occurs.

• Other possibilities include instructions that execute 
if the branch occurs, but do no harm if the branch 
does not occur.

• Delayed branching has the advantage of low 
hardware cost.



11.5 CPU Performance Optimization 
(4 of 15)

• Branch prediction is another approach to 
minimizing branch penalties.

• Branch prediction tries to avoid pipeline stalls 
by guessing the next instruction in the 
instruction stream.
– This is called speculative execution.

• Branch prediction techniques vary according 
to the type of branching. If/then/else, loop 
control, and subroutine branching all have 
different execution profiles.



11.5 CPU Performance Optimization 
(5 of 15)

• There are various ways in which a 
prediction can be made:
– Fixed predictions do not change over time. 
– True predictions result in the branch being 

always taken or never taken.
– Dynamic prediction uses historical information 

about the branch and its outcomes.
– Static prediction does not use any history.



11.5 CPU Performance Optimization 
(6 of 15)

• When fixed prediction assumes that a branch is not 
taken, the normal sequential path of the program is 
taken.

• However, processing is done in parallel in case the 
branch occurs.

• If the prediction is correct, the preprocessing 
information is deleted.

• If the prediction is incorrect, the speculative 
processing is deleted and the preprocessing 
information is used to continue on the correct path.



11.5 CPU Performance Optimization 
(7 of 15)

• When fixed prediction assumes that a branch 
is always taken, state information is saved 
before the speculative processing begins.

• If the prediction is correct, the saved 
information is deleted.

• If the prediction is incorrect, the speculative 
processing is deleted and the saved 
information is restored allowing execution to 
continue on the correct path.



11.5 CPU Performance Optimization 
(8 of 15)

• Dynamic prediction employs a high-speed branch 
prediction buffer to combine an instruction with its 
history.

• The buffer is indexed by the lower portion of the 
address of the branch instruction that also contains 
extra bits indicating whether the branch was 
recently taken.
– One-bit dynamic prediction uses a single bit to indicate 

whether the last occurrence of the branch was taken.
– Two-bit branch prediction retains the history of the 

previous to occurrences of the branch along with a 
probability of the branch being taken.



11.5 CPU Performance Optimization 
(9 of 15)

• The earliest branch prediction implementations 
used static branch prediction.

• Most newer processors (including the Pentium, 
PowerPC, UltraSparc, and Motorola 68060) use 
two-bit dynamic branch prediction.

• Some superscalar architectures include branch 
prediction as a user option.

• Many systems implement branch prediction in 
specialized circuits for maximum throughput.



11.5 CPU Performance Optimization 
(10 of 15)

• The best hardware and compilers will never equal 
the abilities of a human being who has mastered 
the science of effective algorithm and coding 
design.

• People can see an algorithm in the context of the 
machine it will run on.
– For example a good programmer will access a stored 

column-major array in column-major order.
• We end this section by offering some tips to help 

you achieve optimal program performance.



11.5 CPU Performance Optimization 
(11 of 15)

• Operation counting can enhance program 
performance.

• With this method, you count the number of 
instruction types executed in a loop then 
determine the number of machine cycles for 
each instruction.

• The idea is to provide the best mix of 
instruction types for a particular architecture.

• Nested loops provide a number of interesting 
optimization opportunities.



11.5 CPU Performance Optimization 
(12 of 15)

• Loop unrolling is the process of expanding a loop so 
that each new iteration contains several of the 
original operations, thus performing more 
computations per loop iteration.  

• For example:

• becomes
for (i = 1; i <= 30; i+=3)
{ a[i] = a[i] + b[i] * c; 
a[i+1] = a[i+1] + b[i+1] * c;
a[i+2] = a[i+2] + b[i+2] * c; }

for (i = 1; i <= 30; i++)
a[i] = a[i] + b[i] * c;



11.5 CPU Performance Optimization 
(13 of 15)

• Loop fusion combines loops that use the same data 
elements, possibly improving cache performance. 
For example:

• becomes

for (i = 0; i < N; i++)
C[i] = A[i] + B[i];

for (i = 0; i < N; i++)
D[i] = E[i] + C[i];

for (i = 0; i < N; i++)
{ C[i] = A[i] + B[i];
D[i] = E[i] + C[i]; }



11.5 CPU Performance Optimization 
(14 of 15)

• Loop fission splits large 
loops into smaller ones 
to reduce data 
dependencies and 
resource conflicts.

• A loop fission technique 
known as loop peeling 
removes the beginning 
and ending loop 
statements. 

A[1] = 0;
for (i = 2; i < N; i++)
A[i] = A[i] + 8;

A[N] = N;

for (i = 1; i < N+1; i++)
{ if (i==1)

A[i] = 0;
else if (i == N)

A[i] = N;
else A[i] = A[i] + 8; }

For example:

Becomes:



11.5 CPU Performance Optimization 
(15 of 15)

• The text lists a number of rules of thumb for 
getting the most out of program performance.

• Optimization efforts pay the biggest dividends 
when they are applied to code segments that 
are executed the most frequently.

• In short, try to make the common cases fast.



11.6 Disk Performance (1 of 23)

• Optimal disk performance is critical to system 
throughput.

• Disk drives are the slowest memory component, 
with the fastest access times one million times 
longer than main memory access times.

• A slow disk system can choke transaction 
processing and drag down the performance of all 
programs when virtual memory paging is involved.

• Low CPU utilization can actually indicate a problem 
in the I/O subsystem, because the CPU spends 
more time waiting than running.



11.6 Disk Performance (2 of 23)

• Disk utilization is the measure of the percentage of 
the time that the disk is busy servicing I/O requests. 

• It gives the probability that the disk will be busy 
when another I/O request arrives in the disk service 
queue.  

• Disk utilization is determined by the speed of the 
disk and the rate at which requests arrive in the 
service queue. Stated mathematically:
– Utilization = Request Arrival Rate  Disk Service Rate.

• where the arrival rate is given in requests per second, and 
the disk service rate is given in I/O operations per second 
(IOPS)



11.6 Disk Performance (3 of 23)

• The amount of time that a request spends in the 
queue is directly related to the service time and the 
probability that the disk is busy, and it is indirectly 
related to the probability that the disk is idle.  

• In formula form, we have:
Time in Queue = (Service time  Utilization) 

(1 – Utilization)
• The important relationship between queue time 

and utilization (from the formula above) is shown 
graphically on the next slide. 



11.6 Disk Performance (4 of 23)

• The “knee” of the curve 
is around 78%.  This is 
why 80% is the rule-of-
thumb upper limit for 
utilization for most disk 
drives.

• Beyond that, queue 
time quickly becomes 
excessive.



11.6 Disk Performance (5 of 23)

• The manner in which files are organized on a 
disk greatly affects throughput.

• Disk arm motion is the greatest consumer of 
service time. 

• Disk specifications cite average seek time, 
which is usually in the range of 5 to 10ms.

• However, a full-stroke seek can take as long as 
15 to 20ms.

• Clever disk scheduling algorithms endeavor to 
minimize seek time.



11.6 Disk Performance (6 of 23)

• The most naïve disk scheduling policy is first-
come, first-served (FCFS).  

• As its name implies, FCFS services all I/O 
requests in the order in which they arrive in 
the queue.

• With this approach, there is no real control 
over arm motion, so random, wide sweeps 
across the disk are possible.

• The next slide illustrates the arm motion of 
FCFS. 



11.6 Disk Performance (7 of 23)

• Using FCFS, performance is unpredictable 
and widely variable.



11.6 Disk Performance (8 of 23)

• Arm motion is reduced when requests are 
ordered so that the disk arm moves only to 
the track nearest its current location.  

• This is the idea employed by the shortest seek 
time first (SSTF) scheduling algorithm. 

• Disk track requests are queued and selected 
so that the minimum arm motion is involved 
in servicing the request.

• The next slide illustrates the arm motion of 
SSTF. 



11.6 Disk Performance (9 of 23)

• Shortest Seek Time First



11.6 Disk Performance (10 of 23)

• With SSTF, starvation is possible:  A track request 
for a “remote” track could keep getting shoved to 
the back of the queue nearer requests are serviced.  
– Interestingly, this problem is at its worst with low disk 

utilization rates.
• To avoid starvation, fairness can be enforced  by 

having the disk arm continually sweep over the 
surface of the disk, stopping when it reaches a track 
for which it has a request.  
– This approach is called an elevator algorithm.



11.6 Disk Performance (11 of 23)

• In the context of disk scheduling, the elevator 
algorithm is known as SCAN (which is not an 
acronym). 

• While SCAN entails a lot of arm motion, the 
motion is constant and predictable.

• Moreover, the arm changes direction only 
twice: At the center and at the outermost 
edges of the disk.

• The next slide illustrates the arm motion of 
SCAN. 



11.6 Disk Performance (12 of 23)

• SCAN Disk Scheduling



11.6 Disk Performance (13 of 23)

• A SCAN variant, called C-SCAN for circular 
SCAN, treats track zero as if it is adjacent to 
the highest-numbered track on the disk. 

• The arm moves in one direction only, 
providing a simpler SCAN implementation.

• The following slide illustrates a series of read 
requests where after track 75 is read, the arm 
passes to track 99, and then to track 0 from 
which it starts reading the lowest numbered 
tracks starting with track 6.



11.6 Disk Performance (14 of 23)

• C-SCAN Disk Scheduling



11.6 Disk Performance (15 of 23)

• The disk arm motion of SCAN and C-SCAN is can be 
reduced through the use of the LOOK and C-LOOK
algorithms.

• Instead of sweeping the entire disk, the disk arm 
travels only to the highest- and lowest-numbered 
tracks for which access requests are pending.

• Although the circuitry is more complex, LOOK and 
C-LOOK provide the best theoretical throughput, 
although the circuitry is the most complex.



11.6 Disk Performance (16 of 23)

• At high utilization rates, SSTF performs slightly 
better than SCAN or LOOK. But the risk of starvation 
persists.  

• Under very low utilization (under 20%), the 
performance of any of these algorithms will be 
acceptable.

• No matter which scheduling algorithm is used, file 
placement greatly influences performance.

• When possible, the most frequently-used files 
should reside in the center tracks of the disk, and 
the disk should be periodically defragmented.



11.6 Disk Performance (17 of 23)

• The best way to reduce disk arm motion is to avoid 
using the disk as much as possible.  

• To this end, many disk drives, or disk drive 
controllers, are provided with cache memory or a 
number of main memory pages set aside for the 
exclusive use of the I/O subsystem.  

• Disk cache memory is usually associative.  
– Because associative cache searches are time-

consuming, performance can actually be better with 
smaller disk caches because hit rates are usually low.



11.6 Disk Performance (18 of 23)

• Many disk drive-based caches use prefetching 
techniques to reduce disk accesses.  

• When using prefetching, a disk will read a number 
of sectors subsequent to the one requested with 
the expectation that one or more of the subsequent 
sectors will be needed “soon.”

• Empirical studies have shown that over 50% of disk 
accesses are sequential in nature, and that 
prefetching increases performance by 40%, on 
average.



11.6 Disk Performance (19 of 23)

• Prefetching is subject to cache pollution, which 
occurs when the cache is filled with data that no 
process needs, leaving less room for useful data.

• Various replacement algorithms, LRU, LFU and 
random, are employed to help keep the cache 
clean.  

• Additionally, because disk caches serve as a staging 
area for data to be written to the disk, some disk 
cache management schemes evict all bytes after 
they have been written to the disk.



11.6 Disk Performance (20 of 23)

• With cached disk writes, we are faced with the 
problem that cache is volatile memory.  

• In the event of a massive system failure, data in the 
cache will be lost.  

• An application believes that the data has been 
committed to the disk, when it really is in the 
cache. If the cache fails, the data just disappears.

• To defend against power loss to the cache, some 
disk controller-based caches are mirrored and 
supplied with a battery backup.



11.6 Disk Performance (21 of 23)

• Another approach to combating cache failure 
is to employ a write-through cache where a 
copy of the data is retained in the cache in 
case it is needed again “soon,” but it is 
simultaneously written to the disk. 

• The operating system is signaled that the I/O 
is complete only after the data has actually 
been placed on the disk.

• With a write-through cache, performance is 
somewhat compromised to provide reliability.



11.6 Disk Performance (22 of 23)

• When throughput is more important than 
reliability, a system may employ the write 
back cache policy.  

• Some disk drives employ opportunistic writes.
• With this approach, dirty blocks wait in the 

cache until the arrival of a read request for the 
same cylinder. 

• The write operation is then “piggybacked” 
onto the read operation.



11.6 Disk Performance (23 of 23)

• Opportunistic writes have the effect of 
reducing performance on reads, but of 
improving it for writes.  

• The tradeoffs involved in optimizing disk 
performance can present difficult choices.  

• Our first responsibility is to assure data 
reliability and consistency.  

• No matter what its price, upgrading a disk 
subsystem is always cheaper than replacing 
lost data.



Conclusion (1 of 3)

• Computer performance assessment relies upon 
measures of central tendency that include the 
arithmetic mean, weighted arithmetic mean, the 
geometric mean, and the harmonic mean.

• Each of these is applicable under different 
circumstances.

• Benchmark suites have been designed to provide 
objective performance assessment. The most well 
respected of these are the SPEC and TPC 
benchmarks.



Conclusion (2 of 3)

• CPU performance depends upon many factors. 
• These include pipelining, parallel execution 

units, integrated floating-point units, and 
effective branch prediction.

• User code optimization affords the greatest 
opportunity for performance improvement. 

• Code optimization methods include loop 
manipulation and good algorithm design.



Conclusion (3 of 3)

• Most systems are heavily dependent upon I/O 
subsystems. 

• Disk performance can be improved through 
good scheduling algorithms, appropriate file 
placement, and caching.

• Caching provides speed, but involves some 
risk.

• Keeping disks defragmented reduces arm 
motion and results in faster service time.


