
Chapter 10
Topics in Embedded 

Systems



Objectives

• Understand the ways in which embedded 
systems differ from general purpose 
systems.

• Be able to describe the processes and 
practices of embedded hardware design.

• Understand key concepts and tools for 
embedded software development.



10.1 Introduction (1 of 2)

• Embedded systems are real computer systems 
that support the operation of a device (or 
machine) that usually is not a computer.

• The user of the embedded system is rarely 
aware of its existence within the device.

• These systems are all around us. They are in 
watches, automobiles, coffeepots, TVs, 
telephones, aircraft, and just about any 
“intelligent” device that reacts to people or its 
environment.



10.1 Introduction (2 of 2)

• Embedded systems are different from general-
purpose systems in several important ways. 
Some key differences are:
– Embedded systems are resource constrained. 

Utilization of memory and power are critical. The 
economy of hardware and software is often 
paramount, and can affect design decisions.

– Partitioning of hardware and software is fluid.
– Embedded systems programmers must 

understand every detail about the hardware.
– Signal timing and event handling are crucial.



10.2 An Overview Embedded Hardware 
(1 of 22)

• We will classify embedded hardware 
according to the extent to which it is adapted 
or adaptable by the people who program and 
install the system into the device that it 
supports.

• Accordingly, we say that embedded hardware 
falls into categories of:
– Off-the-shelf
– Configurable
– Fully-customized

Note: There are 
many other 
taxonomies. This 
one is convenient 
for our purposes.



10.2 An Overview Embedded Hardware 
(2 of 22)

• Using off-the-shelf hardware, minimal 
hardware customization possible.
– Perhaps add memory or peripherals. The internal 

wiring stays the same.
• The most common off-the-shelf hardware is 

the microcontroller.
– Microcontrollers are often derivatives of “old” PC 

technology. They are inexpensive because 
development costs were recouped long ago.

– There are thousands of different microcontrollers.



10.2 An Overview Embedded Hardware 
(3 of 22)

– Example: 
Microcontrollers are 
Motorola's 68HC12, 
Intel’s 8051, Microchip's 
16F84A, and the PIC 
family.

– A simplified block 
diagram of a 
microcontroller is shown 
at the right.



10.2 An Overview Embedded Hardware 
(4 of 22)

– We have seen all of these 
components before except 
for the watchdog timer.

– A watchdog timer helps 
guard against system 
hangs by continually 
checking for liveness.

– Watchdog timers are not 
used in all 
microcontrollers.



10.2 An Overview Embedded Hardware 
(5 of 22)

• For some applications, microcontrollers are 
too limited in their functionality.

• Systems-on-a-chip (SOCs) are full blown 
computer systems—including all supporting 
circuits—that are etched on a single die.
– Alternatively, separate chips are needed to 

provide the same services. 
– The additional chips are costly and consume 

power and space.



10.2 An Overview Embedded Hardware 
(6 of 22)

• Semi-custom systems-on-a-chip can be 
fabricated whenever a suitable off-the-shelf 
SOC is unavailable.

• The chip mask is created using blocks of pre-
designed, pretested intellectual property (IP) 
circuits.

• The semi-custom approach is costly. To save 
money, off-the-shelf SOCs are preferred, even 
when their functionality is not an exact fit for 
the application.



10.2 An Overview Embedded Hardware 
(7 of 22)

• Programmable logic devices (PLDs) are 
configurable devices in which the behavior of 
the circuits can be changed to suit the needs 
of an application.
– Programmable array logic (PAL) chips consist of 

programmable AND gates connected to a set of 
fixed OR gates.

– Programmable logic array (PLA) chips consist of 
programmable AND gates connected through 
programmable OR gates.



10.2 An Overview Embedded Hardware 
(8 of 22)

• A programmed PAL and a programmed 
PLA:



10.2 An Overview Embedded Hardware 
(9 of 22)

• The behavior of field programmable gate 
arrays (FPGAs) is controlled through values 
stored in memory lookup tables rather than 
by changing connections between logic 
elements.



10.2 An Overview Embedded Hardware 
(10 of 22)

– Truth tables are entered directly into FPGA 
memory.



10.2 An Overview Embedded Hardware 
(11 of 22)

• FPGAs typically consist of blocks of logic 
elements interconnected by switches and 
multiplexers in an “island” configuration.



10.2 An Overview Embedded Hardware 
(12 of 22)

• When:
– Off-the-shelf microcontrollers and SOCs do not have 

sufficient functionality for the task at hand... 
– Or off-the-shelf microcontrollers and SOCs have too 

much functionality, with the excess consuming 
resources needlessly…

– And a semi-custom chip cannot be economically 
fabricated from commercially available IP designs...

– And PLDs are too expensive or too slow…
• The only option left is to design an application-

specific integrated circuit (ASIC) from scratch.



10.2 An Overview Embedded Hardware 
(13 of 22)

• To design a chip from scratch we need to think 
about it from three points of view:

• What do we need the chip to do?
• Which logic components can provide the 

behavior we need?
• What is the best way to position the 

components on the silicon die in order to 
reduce cost and provide the best 
performance?



10.2 An Overview Embedded Hardware 
(14 of 22)

• Gajski’s Logic Synthesis Y-Chart depicts the 
relationship of these three dimensions of 
circuit design.



10.2 An Overview Embedded Hardware 
(15 of 22)

• Creating circuit designs along all three 
dimensions is an enormously complex task 
that is nearly impossible to do—with any 
amount of accuracy or effectiveness—without 
a good toolset.

• Hardware definition languages (HDLs) were 
invented in the latter part of the twentieth 
century. HDLs help designers manage circuit 
complexity by expressing circuit logic in 
algorithmic terms.



10.2 An Overview Embedded Hardware 
(16 of 22)

• Two of the most popular HDLs are Verilog and 
VHDL.

• Verilog is a C-like language invented in 1983. It is 
now IEEE 1364-2001.

• VHDL is an ADA-like HDL released in 1985. It is now 
IEEE 1097-2002.

• The output from the compilation of both of these 
languages is a netlist, which is suitable for use as 
input to electronic design automation machines 
that produce integrated circuit masks.



10.2 An Overview Embedded Hardware 
(17 of 22)

• Traditional HDLs manipulate circuit definitions 
in terms of RTL and discrete signal patterns.

• Using these languages, engineers are strained 
to keep up with the complexity of today’s 
SOCs.

• To make design activities more accurate and  
cost efficient, the level of abstraction must be 
raised above the RTL level.

• SystemC and SpecC are two recent HDLs that 
were invented to help solve this problem. 



10.2 An Overview Embedded Hardware 
(18 of 22)

• SystemC is an extension of C++ that includes classes 
and libraries specifically created for embedded 
systems design, to include modeling events, timing 
specifications, and concurrency.

• SpecC is a C-like language, created from the outset 
as a system design language. 

• A SpecC development package includes a 
methodology that guides engineers through four 
phases of system development:
– Specification, architecture, communication channels, 

and implementation.



10.2 An Overview Embedded Hardware 
(19 of 22)

• Embedded systems have been traditionally  
developed by specialized teams that 
collaboratively:
– Produce a detailed specification derived from a 

functional description.
– Select a suitable processor or decide to build one.
– Determine the hardware-software partition.
– Design the circuit and write the program(s) that will 

run on the system.
– Prototype and test the system.

• This system design cycle is shown on the next slide.



10.2 An Overview Embedded Hardware 
(20 of 22)

Notice the back arrows. These steps are costly.



10.2 An Overview Embedded Hardware 
(21 of 22)

• SystemC and SpecC facilitate changes to the 
traditional design lifecycle.
– Hardware developers and software developers can 

speak the same language.
– Codevelopment teams work side-by-side 

simultaneously creating hardware designs and 
writing programs.

– Codevelopment shortens the development 
lifecycle and improves product quality.

• The embedded system codesign lifecycle is 
shown on the next slide.



10.2 An Overview Embedded Hardware 
(22 of 22)

Rework takes place on a virtual system.



10.3 An Overview Embedded Software 
(1 of 11)

• Software development for embedded systems 
presents a distinct set of challenges.

• Some of these challenges are related to the 
uniqueness of the hardware, such as its 
particular memory organization.
– Memory limitations are almost always a software 

development constraint.
– Virtual memory is not suitable for most embedded 

applications.



10.3 An Overview Embedded Software 
(2 of 11)

• Embedded system memory can consist of 
several different kinds, including RAM, 
ROM, and flash, all sharing the same 
address space.

Memory leaks in embedded systems are especially problematic.



10.3 An Overview Embedded Software 
(3 of 11)

• Embedded operating systems differ from general-
purpose operating systems in a number of ways.
– Responsiveness is one of the major distinguishing 

features.
• Not all embedded operating systems are real-time 

operating systems. 
– Timing requirements may differ little from a desktop 

computer.
– Hard real-time systems have strict timing constraints.
– In soft real-time systems, timing is important but not 

critical.



10.3 An Overview Embedded Software 
(4 of 11)

• Interrupt latency is the elapsed time between the 
occurrence of an interrupt and the execution of the 
first instruction of the interrupt service routine 
(ISR).
– Interrupt latency is indirectly related to system 

responsiveness. The smaller the latency, the faster the 
response.

• Interrupts can happen at any time and in any order.
• The ISR for one interrupt possibly may not be 

completed before another interrupt occurs.
– High-quality systems support such interrupt nesting.



10.3 An Overview Embedded Software 
(5 of 11)

• Memory organization in resource-constrained 
systems differs from traditional systems. 

• The entire address space might not be used.
• The stack and the heap typically start at 

different ends of the address space.



10.3 An Overview Embedded Software 
(6 of 11)

• Memory footprint is a critical concern with 
embedded operating systems.
– If an operating system takes up too much memory, 

additional memory may be required.
– Memory consumes power.
– Thus, the smaller the operating system, the better.

• Most embedded operating systems are 
modular, allowing only the most necessary 
features to be installed.



10.3 An Overview Embedded Software 
(7 of 11)

• IEEE 1003.1-2001, POSIX, is the specification for 
standardized Unix, to which Embedded Linux 
adheres.

• Other popular embedded operating systems 
include Windows 10 IoT, QNX, and MS-DOS.
– Windows has several versions, each intended for a 

particular application area.
• There are hundreds of others, each having its 

distinctive behavior and target hardware.
– Licensing costs for the operating system are as great a 

concern as hardware costs.



10.3 An Overview Embedded Software 
(8 of 11)

• General-purpose software development is 
usually iterative and incremental.
– Code a little, test a little.

• Embedded systems development requires a 
much more rigorous and linear path. 

• Functional requirements must be clear, 
complete, and accurate when work begins.

• Formal languages, such as Z, are helpful in 
providing accuracy and correctness.



10.3 An Overview Embedded Software 
(9 of 11)

• Large software projects are usually partitioned into 
chunks so that the chunks can be assigned to 
different teams.

• Embedded software doesn’t partition so easily, 
making team assignments difficult.

• To improve performance, some embedded 
programmers advocate the use of global variables 
and unstructured code.

• Others rail against this idea, saying that it is not 
good engineering practice regardless of the 
platform for which the software is written.



10.3 An Overview Embedded Software 
(10 of 11)

• Event handling is a major challenge to the 
embedded programmer. 
– It lies at the heart of embedded systems 

functionality.
• Events can happen asynchronously and in any 

order. 
• It is virtually impossible to test all possible 

sequences of events. 
• Testing must be rigorous and thorough. 



10.3 An Overview Embedded Software 
(11 of 11)

• Embedded programming is essentially a matter of 
raising and responding to signals. 

• Hardware support may be designed into a chip to 
facilitate the tracing and debugging of signal 
patterns.
– Examples are ICE, Motorola’s BDM, IEEE 1149.1 JTAG, 

and IEEE 5001 Nexus.
• Some platforms offer no tool support in the way of 

debuggers or even compilers.
– Writing software for these systems is called bare metal 

programming.



Conclusion (1 of 5)

• Embedded systems differ from general-
purpose systems because:
– They are resource constrained.
– Programming requires deep awareness of the 

underlying hardware.
– Signal timing and event handling are critical.
– The hardware-software partition is moveable.

• Embedded hardware can be off-the-shelf, 
semi-customized, fully-customized, or 
configurable.



Conclusion (2 of 5)

• Programmable logic devices include:
– PALs: Programmable AND gates connected to a 

set of fixed OR gates.
– PLA: Programmable AND gates connected 

through programmable OR gates.
– FPGA: Logic functions provided through lookup 

tables.
• PLDs tend to be slow and expensive as 

compared to off-the-shelf ICs.



Conclusion (3 of 5)

• Hardware definition languages Verilog, 
VHDL specify the functions and layout of 
full-custom chips.

• SpecC and SystemC raise the level of 
abstraction in chip design.

• Hardware-software codesign and 
cosimulation reduces errors and brings 
products to market faster.



Conclusion (4 of 5)

• Embedded operating systems differ from 
general purpose operating systems in their 
timing and memory footprint requirements.

• IEEE 1003.1-2001, POSIX, is the specification 
for standardized Unix, to which Embedded 
Linux adheres.

• Other popular embedded operating systems 
include Windows 10 IoT, QNX, and MS-DOS.



Conclusion (5 of 5)

• Embedded software requires accurate 
specifications and rigorous development 
practices.
– Formal languages help.

• Event processing requires careful specification 
and testing.

• Embedded system debugging can be 
supported by hardware interfaces to include 
ICE, BDM, JTAG, and Nexus.


