
Chapter 9
Alternative

Architectures

Objectives

• Learn the properties that often distinguish
RISC from CISC architectures.

• Understand how multiprocessor architectures
are classified.

• Appreciate the factors that create complexity
in multiprocessor systems.

• Become familiar with the ways in which some
architectures transcend the traditional von
Neumann paradigm.

9.1 Introduction

• We have so far studied only the simplest
models of computer systems; classical single-
processor von Neumann systems.

• This chapter presents a number of different
approaches to computer organization and
architecture.

• Some of these approaches are in place in
today’s commercial systems. Others may form
the basis for the computers of tomorrow.

9.2 RISC Machines (1 of 9)

• The underlying philosophy of RISC machines is that a
system is better able to manage program execution
when the program consists of only a few different
instructions that are the same length and require the
same number of clock cycles to decode and execute.

• RISC systems access memory only with explicit load and
store instructions.

• In CISC systems, many different kinds of instructions
access memory, making instruction length variable and
fetch-decode-execute time unpredictable.

9.2 RISC Machines (2 of 9)

• The difference between CISC and RISC
becomes evident through the basic computer
performance equation:

• RISC systems shorten execution time by
reducing the clock cycles per instruction.

• CISC systems improve performance by
reducing the number of instructions per
program.

9.2 RISC Machines (3 of 9)

• The simple instruction set of RISC machines
enables control units to be hardwired for
maximum speed.

• The more complex—and variable—instruction
set of CISC machines requires microcode-
based control units that interpret instructions
as they are fetched from memory. This
translation takes time.

• With fixed-length instructions, RISC lends itself
to pipelining and speculative execution.

mov ax, 0
mov bx, 10
mov cx, 5

Begin add ax, bx
loop Begin

9.2 RISC Machines (4 of 9)

• Consider the program fragments:

• The total clock cycles for the CISC version might be:
– (2 movs  1 cycle) + (1 mul  30 cycles)
= 32 cycles

• While the clock cycles for the RISC version is:
– (3 movs  1 cycle) + (5 adds  1 cycle) +
(5 loops  1 cycle) = 13 cycles

• With RISC clock cycle being shorter, RISC gives us much faster
execution speeds.

mov ax, 10
mov bx, 5
mul bx, ax

CISC RISC

9.2 RISC Machines (5 of 9)

• Because of their load-store ISAs, RISC architectures
require a large number of CPU registers.

• These registers provide fast access to data during
sequential program execution.

• They can also be employed to reduce the overhead
typically caused by passing parameters to
subprograms.

• Instead of pulling parameters off of a stack, the
subprogram is directed to use a subset of registers.

9.2 RISC Machines (6 of 9)

• This is how registers
can be overlapped
in a RISC system.

• The current window
pointer (CWP)
points to the active
register window.

9.2 RISC Machines (7 of 9)

• It is becoming increasingly difficult to
distinguish RISC architectures from CISC
architectures.

• Some RISC systems provide more extravagant
instruction sets than some CISC systems.

• Some systems combine both approaches.
• The following two slides summarize the

characteristics that traditionally typify the
differences between these two architectures.

9.2 RISC Machines (8 of 9)

• CISC
– Single register set
– One or two register

operands per instruction
– Parameter passing

through memory
– Multiple cycle

instructions
– Microprogrammed

control
– Less pipelined

• RISC
– Multiple register sets
– Three operands per

instruction
– Parameter passing

through register
windows

– Single-cycle instructions
– Hardwired

control
– Highly pipelined

9.2 RISC Machines (9 of 9)

• CISC
– Many complex

instructions
– Variable length

instructions
– Complexity in microcode
– Many instructions can

access memory
– Many addressing modes

• RISC
– Simple instructions, few

in number
– Fixed length instructions
– Complexity in compiler
– Only LOAD/STORE

instructions access
memory

– Few addressing modes

9.3 Flynn’s Taxonomy (1 of 7)

• Many attempts have been made to come up
with a way to categorize computer
architectures.

• Flynn’s Taxonomy has been the most enduring
of these, despite having some limitations.

• Flynn’s Taxonomy takes into consideration the
number of processors and the number of data
paths incorporated into an architecture.

• A machine can have one or many processors
that operate on one or many data streams.

9.3 Flynn’s Taxonomy (2 of 7)

• The four combinations of multiple processors and
multiple data paths are described by Flynn as:
– SISD: Single instruction stream, single data stream.

These are classic uniprocessor systems.
– SIMD: Single instruction stream, multiple data streams.

Execute the same instruction on multiple data values,
as in vector processors.

– MIMD: Multiple instruction streams, multiple data
streams. These are today’s parallel architectures.

– MISD: Multiple instruction streams, single data stream.

9.3 Flynn’s Taxonomy (3 of 7)

• Flynn’s Taxonomy falls short in a number of ways:
– First, there appears to be no need for MISD machines.
– Second, parallelism is not homogeneous. This

assumption ignores the contribution of specialized
processors.

– Third, it provides no straightforward way to distinguish
architectures of the MIMD category.

• One idea is to divide these systems into those that
share memory, and those that don’t, as well as
whether the interconnections are bus-based or
switch-based.

9.3 Flynn’s Taxonomy (4 of 7)

• Symmetric multiprocessors (SMP) and massively
parallel processors (MPP) are MIMD architectures
that differ in how they use memory.

• SMP systems share the same memory and MPP do
not.

• An easy way to distinguish SMP from MPP is:
– MPP  many processors + distributed memory +

communication via network
– SMP  fewer processors + shared memory +

communication via memory

9.3 Flynn’s Taxonomy (5 of 7)

• Other examples of MIMD architectures are found in
distributed computing, where processing takes place
collaboratively among networked computers.
– A network of workstations (NOW) uses otherwise idle

systems to solve a problem.
– A collection of workstations (COW) is a NOW where one

workstation coordinates the actions of the others.
– A dedicated cluster parallel computer (DCPC) is a group of

workstations brought together to solve a specific problem.
– A pile of PCs (POPC) is a cluster of (usually) heterogeneous

systems that form a dedicated parallel system.

9.3 Flynn’s Taxonomy (6 of 7)

• Flynn’s Taxonomy has been expanded to include
SPMD (single program, multiple data) architectures.

• Each SPMD processor has its own data set and
program memory. Different nodes can execute
different instructions within the same program
using instructions similar to:
– If myNodeNum = 1 do this, else do that

• Yet another idea missing from Flynn’s is whether
the architecture is instruction driven or data driven.

The next slide provides a revised taxonomy.

9.3 Flynn’s Taxonomy (7 of 7)

9.4 Parallel and Multiprocessor
Architectures (1 of 21)

• Parallel processing is capable of economically
increasing system throughput while providing
better fault tolerance.

• The limiting factor is that no matter how well an
algorithm is parallelized, there is always some
portion that must be done sequentially.
– Additional processors sit idle while the sequential work

is performed.
• Thus, it is important to keep in mind that an n-fold

increase in processing power does not necessarily
result in an n-fold increase in throughput.

9.4 Parallel and Multiprocessor
Architectures (2 of 21)

• Recall that pipelining divides the fetch-decode-execute
cycle into stages that each carry out a small part of the
process on a set of instructions.

• Ideally, an instruction exits the pipeline during each tick
of the clock.

• Superpipelining occurs when a pipeline has stages that
require less than half a clock cycle to complete.
– The pipeline is equipped with a separate clock running at a

frequency that is at least double that of the main system
clock.

• Superpipelining is only one aspect of superscalar
design.

9.4 Parallel and Multiprocessor
Architectures (3 of 21)

• Superscalar architectures include multiple
execution units such as specialized integer and
floating-point adders and multipliers.

• A critical component of this architecture is the
instruction fetch unit, which can simultaneously
retrieve several instructions from memory.

• A decoding unit determines which of these
instructions can be executed in parallel and
combines them accordingly.

• This architecture also requires compilers that make
optimum use of the hardware.

9.4 Parallel and Multiprocessor
Architectures (4 of 21)

• Very long instruction word (VLIW) architectures
differ from superscalar architectures because the
VLIW compiler, instead of a hardware decoding
unit, packs independent instructions into one long
instruction that is sent down the pipeline to the
execution units.

• One could argue that this is the best approach
because the compiler can better identify instruction
dependencies.

• However, compilers tend to be conservative and
cannot have a view of the run time code.

9.4 Parallel and Multiprocessor
Architectures (5 of 21)

• Vector computers are processors that operate on
entire vectors or matrices at once.
– These systems are often called supercomputers.

• Vector computers are highly pipelined so that
arithmetic instructions can be overlapped.

• Vector processors can be categorized according to
how operands are accessed.
– Register-register vector processors require all

operands to be in registers.
– Memory-memory vector processors allow operands to

be sent from memory directly to the arithmetic units.

9.4 Parallel and Multiprocessor
Architectures (6 of 21)

• A disadvantage of register-register vector
computers is that large vectors must be broken into
fixed-length segments so they will fit into the
register sets.

• Memory-memory vector computers have a longer
startup time until the pipeline becomes full.

• In general, vector machines are efficient because
there are fewer instructions to fetch, and
corresponding pairs of values can be prefetched
because the processor knows it will have a
continuous stream of data.

9.4 Parallel and Multiprocessor
Architectures (7 of 21)

• MIMD systems can communicate through shared
memory or through an interconnection network.

• Interconnection networks are often classified
according to their topology, routing strategy, and
switching technique.

• Of these, the topology is a major determining factor
in the overhead cost of message passing.

• Message passing takes time owing to network
latency and incurs overhead in the processors.

9.4 Parallel and Multiprocessor
Architectures (8 of 21)

• Interconnection networks can be either static or
dynamic.

• Processor-to-memory connections usually employ
dynamic interconnections. These can be blocking or
nonblocking.
– Nonblocking interconnections allow connections to

occur simultaneously.
• Processor-to-processor message-passing

interconnections are usually static, and can employ
any of several different topologies, as shown on the
following slide.

9.4 Parallel and Multiprocessor
Architectures (9 of 21)

Completely Connected Star Linear and Ring

Mesh and Mesh RingTree

Four-Dimensional Hypercube A Bus-Based Network

9.4 Parallel and Multiprocessor
Architectures (10 of 21)

• Dynamic routing is achieved through
switching networks that consist of crossbar
switches or 2  2 switches.

Through Cross

Upper Broadcast Lower Broadcast

9.4 Parallel and Multiprocessor
Architectures (11 of 21)

• Multistage
interconnection (or
shuffle) networks are
the most advanced class
of switching networks.

• They can be used in
loosely-coupled
distributed systems, or
in tightly-coupled
processor-to-memory
configurations.

9.4 Parallel and Multiprocessor
Architectures (12 of 21)

• There are advantages and disadvantages to each
switching approach.
– Bus-based networks, while economical, can be

bottlenecks. Parallel buses can alleviate bottlenecks,
but are costly.

– Crossbar networks are nonblocking, but require n2

switches to connect n entities.
– Omega networks are blocking networks, but exhibit

less contention than bus-based networks. They are
somewhat more economical than crossbar networks, n
nodes needing log2n stages with n / 2 switches per
stage.

9.4 Parallel and Multiprocessor
Architectures (13 of 21)

• Tightly-coupled multiprocessor systems use
the same memory. They are also referred to
as shared memory multiprocessors.

• The processors do not necessarily have to
share the same block of physical memory.

• Each processor can have its own memory, but
it must share it with the other processors.

• Configurations such as these are called
distributed shared memory multiprocessors.

9.4 Parallel and Multiprocessor
Architectures (14 of 21)

• Shared memory MIMD machines can be divided
into two categories based upon how they access
memory.

• In uniform memory access (UMA) systems, all
memory accesses take the same amount of time.

• To realize the advantages of a multiprocessor
system, the interconnection network must be fast
enough to support multiple concurrent accesses to
memory, or it will slow down the whole system.

• Thus, the interconnection network limits the
number of processors in a UMA system.

9.4 Parallel and Multiprocessor
Architectures (15 of 21)

• The other category of MIMD machines are the
nonuniform memory access (NUMA) systems.

• While NUMA machines see memory as one
contiguous addressable space, each processor gets
its own piece of it.

• Thus, a processor can access its own memory much
more quickly than it can access memory that is
elsewhere.

• Not only does each processor have its own
memory, it also has its own cache, a configuration
that can lead to cache coherence problems.

9.4 Parallel and Multiprocessor
Architectures (17 of 21)

• When a processor’s cached value is updated
concurrently with the update to memory, we say
that the system uses a write-through cache update
protocol.

• If the write-through with update protocol is used, a
message containing the update is broadcast to all
processors so that they may update their caches.

• If the write-through with invalidate protocol is
used, a broadcast asks all processors to invalidate
the stale cached value.

9.4 Parallel and Multiprocessor
Architectures (18 of 21)

• Write-invalidate uses less bandwidth because it uses
the network only the first time the data is updated, but
retrieval of the fresh data takes longer.

• Write-update creates more message traffic, but all
caches are kept current.

• Another approach is the write-back protocol that delays
an update to memory until the modified cache block
must be replaced.

• At replacement time, the processor writing the cached
value must obtain exclusive rights to the data. When
rights are granted, all other cached copies are
invalidated.

9.4 Parallel and Multiprocessor
Architectures (19 of 21)

• Distributed computing is another form of
multiprocessing. However, the term distributed
computing means different things to different people.

• In a sense, all multiprocessor systems are distributed
systems because the processing load is distributed
among processors that work collaboratively.

• The common understanding is that a distributed system
consists of very loosely-coupled processing units.

• Recently, NOWs have been used as distributed systems
to solve large, intractable problems.

9.4 Parallel and Multiprocessor
Architectures (20 of 21)

• For general-use computing, the details of the network
and the nature of the multiplatform computing should
be transparent to the users of the system.

• Remote procedure calls (RPCs) enable this
transparency. RPCs use resources on remote machines
by invoking procedures that reside and are executed on
the remote machines.

• RPCs are employed by numerous vendors of distributed
computing architectures including the Common Object
Request Broker Architecture (CORBA) and Java’s
Remote Method Invocation (RMI).

9.4 Parallel and Multiprocessor
Architectures (21 of 21)

• Cloud computing is distributed computing to the
extreme.

• It provides services over the Internet through a
collection of loosely-coupled systems.

• In theory, the service consumer has no awareness of
the hardware, or even its location.
– Your services and data may even be located on the same

physical system as that of your business competitor.
– The hardware might even be located in another country.

• Security concerns are a major inhibiting factor for cloud
computing.

9.5 Alternative Parallel
Processing Approaches (1 of 15)

• Some people argue that real breakthroughs in
computational power—breakthroughs that will
enable us to solve today’s intractable problems—
will occur only by abandoning the von Neumann
model.

• Numerous efforts are now underway to devise
systems that could change the way that we think
about computers and computation.

• In this section, we will look at three of these:
dataflow computing, neural networks, and systolic
processing.

9.5 Alternative Parallel
Processing Approaches (2 of 15)

• Von Neumann machines exhibit sequential control
flow: A linear stream of instructions is fetched from
memory, and they act upon data.

• Program flow changes under the direction of
branching instructions.

• In dataflow computing, program control is directly
controlled by data dependencies.

• There is no program counter or shared storage.
• Data flows continuously and is available to multiple

instructions simultaneously.

9.5 Alternative Parallel
Processing Approaches (3 of 15)

• A data flow graph represents the
computation flow in a dataflow computer.

• Its nodes contain the instructions and its
arcs indicate the data dependencies.

9.5 Alternative Parallel
Processing Approaches (4 of 15)

• When a node has all of the data tokens it
needs, it fires, performing the required
operation, and consuming the token.

• The result is placed on an output arc.

9.5 Alternative Parallel
Processing Approaches (5 of 15)

• A dataflow program to calculate N! and its
corresponding graph are shown below.

(initial j <- n; k <- 1
while j > 1 do
new k <- * j;
new j <- j - 1;

return k)

9.5 Alternative Parallel
Processing Approaches (6 of 15)

• The architecture of a dataflow computer
consists of processing elements that
communicate with one another.

• Each processing element has an enabling unit
that sequentially accepts tokens and stores
them in memory.

• If the node to which this token is addressed
fires, the input tokens are extracted from
memory and are combined with the node
itself to form an executable packet.

9.5 Alternative Parallel
Processing Approaches (7 of 15)

• Using the executable packet, the processing
element’s functional unit computes any output
values and combines them with destination
addresses to form more tokens.

• The tokens are then sent back to the enabling unit,
optionally enabling other nodes.

• Because dataflow machines are data driven,
multiprocessor dataflow architectures are not
subject to the cache coherency and contention
problems that plague other multiprocessor
systems.

9.5 Alternative Parallel
Processing Approaches (8 of 15)

• Neural network computers consist of a large
number of simple processing elements that
individually solve a small piece of a much larger
problem.

• They are particularly useful in dynamic situations
that are an accumulation of previous behavior, and
where an exact algorithmic solution cannot be
formulated.

• Like their biological analogues, neural networks can
deal with imprecise, probabilistic information, and
allow for adaptive interactions.

9.5 Alternative Parallel
Processing Approaches (9 of 15)

• Neural network processing elements (PEs) multiply
a set of input values by an adaptable set of weights
to yield a single output value.

• The computation carried out by each PE is
simplistic—almost trivial—when compared to a
traditional microprocessor. Their power lies in their
massively parallel architecture and their ability to
adapt to the dynamics of the problem space.

• Neural networks learn from their environments. A
built-in learning algorithm directs this process.

9.5 Alternative Parallel
Processing Approaches (10 of 15)

• The simplest neural net
PE is the perceptron.

• Perceptrons are
trainable neurons. A
perceptron produces a
Boolean output based
upon the values that it
receives from several
inputs.

9.5 Alternative Parallel
Processing Approaches (11 of 15)

• Perceptrons are trainable because the
threshold and input weights are modifiable.

• In this example, the output Z is true (1) if
the net input, w1x1 + w2x2 + . . .+ wnxn is
greater than the threshold T.

9.5 Alternative Parallel
Processing Approaches (12 of 15)

• Perceptrons are trained by use of supervised or
unsupervised learning.

• Supervised learning assumes prior knowledge of
correct results, which are fed to the neural net
during the training phase. If the output is incorrect,
the network modifies the input weights to produce
correct results.

• Unsupervised learning does not provide correct
results during training. The network adapts solely in
response to inputs, learning to recognize patterns
and structure in the input sets.

9.5 Alternative Parallel
Processing Approaches (13 of 15)

• The biggest problem with neural nets is that when they
consist of more than 10 or 20 neurons, it is impossible
to understand how the net is arriving at its results. They
can derive meaning from data that are too complex to
be analyzed by people.
– The U.S. military once used a neural net to try to locate

camouflaged tanks in a series of photographs. It turned out
that the nets were basing their decisions on the cloud cover
instead of the presence or absence of the tanks.

• Despite early setbacks, neural nets are gaining
credibility in sales forecasting, data validation, and
facial recognition.

9.5 Alternative Parallel
Processing Approaches (14 of 15)

• Where neural nets are a model of biological
neurons, systolic array computers are a model
of how blood flows through a biological heart.

• Systolic arrays, a variation of SIMD computers,
have simple processors that process data by
circulating it through vector pipelines.

9.5 Alternative Parallel
Processing Approaches (15 of 15)

• Systolic arrays can sustain great throughout
because they employ a high degree of parallelism.

• Connections are short, and the design is simple and
scalable. They are robust, efficient, and cheap to
produce. They are, however, highly specialized and
limited as to they types of problems they can solve.

• They are useful for solving repetitive problems that
lend themselves to parallel solutions using a large
number of simple processing elements.
– Examples include sorting, image processing, and

Fourier transformations.

9.6 Quantum Computing (1 of 8)

• Computers, as we know them are binary, transistor-
based systems.

• But transistor-based systems strain to keep up with
our computational demands.

• We increase the number of transistors for more
power, and each transistor smaller to fit on the die.
– Transistors are becoming so small that it is hard for

them to hold electrons in the way in which we're
accustomed to.

• Thus, alternatives to transistor-based systems are
an active area or research.

9.6 Quantum Computing (2 of 8)

• Computers are now being built based on:
– Optics (photonic computing)
– Biological neurons
– DNA

• One of the most intriguing is quantum computers.
• Quantum computing uses quantum bits (qubits) that

can be in multiple states at once.
• The “state” of a qubit is determined by the spin of an

electron.
• A thorough discussion of “spin” is under the domain of

quantum physics.

9.6 Quantum Computing (3 of 8)

• A qubit can be in multiple states at the same
time.
– This is called superpositioning.

• A 3-bit register can simultaneously hold the
values 0 through 7.
– 8 operations can be performed at the same time.

• This phenomenon is called quantum
parallelism.
– A system with 600 qbits can superposition 2600

states.

9.6 Quantum Computing (4 of 8)

• D-Wave Computers is the first quantum
computer manufacturer.

• D-Wave computers having 512 qbits were
purchased separately by University of
Southern California and Google for research
purposes.

• Quantum computers may be applied in the
areas of cryptography, true random-number
generation, and in the solution of other
intractable problems.

9.6 Quantum Computing (5 of 8)

• Making effective use of quantum computers
requires rethinking our approach to problems
and the development of new algorithms.
– To break a cypher, the quantum machine

simulates every possible state of the problem set
(i.e., every possible key for a cipher) and it
“collapses” on the correct solution.

• Examples include Schor’s algorithm for
factoring products of prime numbers.

• Many others remain to be discovered.

9.6 Quantum Computing (6 of 8)

• These systems are not constrained by a fetch-
decode-execute cycle; however, quantum
architectures have yet to settle on a definitive
paradigm analogous to von Neumann systems.

• Rose’s Law states that the number of qubits that
can be assembled to successfully perform
computations will double every 12 months; this has
been precisely the case for the past 9 years.
– This “law” is named after Geordie Rose, D-Wave’s

founder and chief technology officer.

9.6 Quantum Computing (7 of 8)

• One of the largest obstacles to the progress of
quantum computation is the tendency for
qubits to decay into a state of decoherence.
– Decoherence causes uncorrectable errors.

• Advanced error-correction algorithms have
been applied to this problem and show
promise.

• Much research remains to be done, however.

9.6 Quantum Computing (8 of 8)

• The realization of quantum computing has
raised questions about technological
singularity.
– Technological singularity is the theoretical point

when human technology has fundamentally and
irreversibly altered human development.

– This is the point when civilization changes to an
extent that its technology is incomprehensible to
previous generations.

• Are we there, now?

Conclusion (1 of 4)

• The common distinctions between RISC and
CISC systems include RISC’s short, fixed-length
instructions. RISC ISAs are load-store
architectures. These things permit RISC
systems to be highly pipelined.

• Flynn’s Taxonomy provides a way to classify
multiprocessor systems based upon the
number of processors and data streams. It
falls short of being an accurate depiction of
today’s systems.

Conclusion (2 of 4)

• Massively parallel processors have many
processors, distributed memory, and
computational elements communicate
through a network. Symmetric
multiprocessors have fewer processors and
communicate through shared memory.

• Characteristics of superscalar design include
superpipelining, and specialized instruction
fetch and decoding units.

Conclusion (3 of 4)

• Very long instruction word (VLIW) architectures
differ from superscalar architectures because the
compiler, instead of a decoding unit, creates long
instructions.

• Vector computers are highly-pipelined processors
that operate on entire vectors or matrices at once.

• MIMD systems communicate through networks
that can be blocking or nonblocking. The network
topology often determines throughput.

Conclusion (4 of 4)

• Multiprocessor memory can be distributed or
exist in a single unit. Distributed memory
brings to rise problems with cache coherency
that are addressed using cache coherency
protocols.

• New architectures are being devised to solve
intractable problems. These new architectures
include dataflow computers, neural networks,
systolic arrays, and quantum computers.

