
Chapter 9
Alternative 

Architectures



Objectives

• Learn the properties that often distinguish 
RISC from CISC architectures.

• Understand how multiprocessor architectures 
are classified.

• Appreciate the factors that create complexity 
in multiprocessor systems.

• Become familiar with the ways in which some 
architectures transcend the traditional von 
Neumann paradigm.



9.1 Introduction

• We have so far studied only the simplest 
models of computer systems; classical single-
processor von Neumann systems.

• This chapter presents a number of different 
approaches to computer organization and 
architecture.

• Some of these approaches are in place in 
today’s commercial systems. Others may form 
the basis for the computers of tomorrow.



9.2 RISC Machines (1 of 9)

• The underlying philosophy of RISC machines is that a 
system is better able to manage program execution 
when the program consists of only a few different 
instructions that are the same length and require the 
same number of clock cycles to decode and execute.

• RISC systems access memory only with explicit load and 
store instructions.

• In CISC systems, many different kinds of instructions 
access memory, making instruction length variable and 
fetch-decode-execute time unpredictable. 



9.2 RISC Machines (2 of 9)

• The difference between CISC and RISC 
becomes evident through the basic computer 
performance equation:

• RISC systems shorten execution time by 
reducing the clock cycles per instruction.

• CISC systems improve performance by 
reducing the number of instructions per 
program.



9.2 RISC Machines (3 of 9)

• The simple instruction set of RISC machines 
enables control units to be hardwired for 
maximum speed.

• The more complex—and variable—instruction 
set of CISC machines requires microcode-
based control units that interpret instructions 
as they are fetched from memory. This 
translation takes time.

• With fixed-length instructions, RISC lends itself 
to pipelining and speculative execution.



mov ax, 0
mov bx, 10
mov cx, 5

Begin  add ax, bx
loop Begin

9.2 RISC Machines (4 of 9)

• Consider the program fragments:

• The total clock cycles for the CISC version might be:
– (2 movs  1 cycle) + (1 mul  30 cycles) 
= 32 cycles

• While the clock cycles for the RISC version is:
– (3 movs  1 cycle) + (5 adds  1 cycle) + 
(5 loops  1 cycle) = 13 cycles

• With RISC clock cycle being shorter, RISC gives us much faster 
execution speeds.

mov ax, 10
mov bx, 5
mul bx, ax

CISC RISC



9.2 RISC Machines (5 of 9)

• Because of their load-store ISAs, RISC architectures 
require a large number of CPU registers.

• These registers provide fast access to data during 
sequential program execution.

• They can also be employed to reduce the overhead 
typically caused by passing parameters to 
subprograms.

• Instead of pulling parameters off of a stack, the 
subprogram is directed to use a subset of registers.



9.2 RISC Machines (6 of 9)

• This is how registers 
can be overlapped 
in a RISC system.  

• The current window 
pointer (CWP) 
points to the active 
register window.



9.2 RISC Machines (7 of 9)

• It is becoming increasingly difficult to 
distinguish RISC architectures from CISC 
architectures.

• Some RISC systems provide more extravagant 
instruction sets than some CISC systems.

• Some systems combine both approaches.
• The following two slides summarize the 

characteristics that traditionally typify the 
differences between these two architectures.



9.2 RISC Machines (8 of 9)

• CISC
– Single register set
– One or two register 

operands per instruction
– Parameter passing 

through memory
– Multiple cycle 

instructions
– Microprogrammed 

control
– Less pipelined

• RISC
– Multiple register sets
– Three operands per 

instruction
– Parameter passing 

through register 
windows

– Single-cycle instructions
– Hardwired 

control
– Highly pipelined



9.2 RISC Machines (9 of 9)

• CISC
– Many complex 

instructions
– Variable length 

instructions
– Complexity in microcode
– Many instructions can 

access memory
– Many addressing modes

• RISC
– Simple instructions, few 

in number
– Fixed length instructions
– Complexity in compiler
– Only LOAD/STORE

instructions access 
memory

– Few addressing modes



9.3 Flynn’s Taxonomy (1 of 7)

• Many attempts have been made to come up 
with a way to categorize computer 
architectures.

• Flynn’s Taxonomy has been the most enduring 
of these, despite having some limitations.

• Flynn’s Taxonomy takes into consideration the 
number of processors and the number of data 
paths incorporated into an architecture.

• A machine can have one or many processors 
that operate on one or many data streams.



9.3 Flynn’s Taxonomy (2 of 7)

• The four combinations of multiple processors and 
multiple data paths are described by Flynn as:
– SISD: Single instruction stream, single data stream. 

These are classic uniprocessor systems.
– SIMD: Single instruction stream, multiple data streams. 

Execute the same instruction on multiple data values, 
as in vector processors.

– MIMD: Multiple instruction streams, multiple data 
streams. These are today’s parallel architectures.

– MISD: Multiple instruction streams, single data stream.



9.3 Flynn’s Taxonomy (3 of 7)

• Flynn’s Taxonomy falls short in a number of ways:
– First, there appears to be no need for MISD machines.
– Second, parallelism is not homogeneous. This 

assumption ignores the contribution of specialized 
processors.

– Third, it provides no straightforward way to distinguish 
architectures of the MIMD category.

• One idea is to divide these systems into those that 
share memory, and those that don’t, as well as 
whether the interconnections are bus-based or 
switch-based.



9.3 Flynn’s Taxonomy (4 of 7)

• Symmetric multiprocessors (SMP) and massively 
parallel processors (MPP) are MIMD architectures 
that differ in how they use memory.

• SMP systems share the same memory and MPP do 
not.

• An easy way to distinguish SMP from MPP is:
– MPP  many processors + distributed memory + 

communication via network
– SMP  fewer processors + shared memory +       

communication via memory



9.3 Flynn’s Taxonomy (5 of 7)

• Other examples of MIMD architectures are found in 
distributed computing, where processing takes place 
collaboratively among networked computers.
– A network of workstations (NOW) uses otherwise idle 

systems to solve a problem.
– A collection of workstations (COW) is a NOW where one 

workstation coordinates the actions of the others.
– A dedicated cluster parallel computer (DCPC) is a group of 

workstations brought together to solve a specific problem.
– A pile of PCs (POPC) is a cluster of (usually) heterogeneous 

systems that form a dedicated parallel system.



9.3 Flynn’s Taxonomy (6 of 7)

• Flynn’s Taxonomy has been expanded to include 
SPMD (single program, multiple data) architectures.

• Each SPMD processor has its own data set and 
program memory. Different nodes can execute 
different instructions within the same program 
using instructions similar to:
– If myNodeNum = 1 do this, else do that

• Yet another idea missing from Flynn’s is whether 
the architecture is instruction driven or data driven. 

The next slide provides a revised taxonomy. 



9.3 Flynn’s Taxonomy (7 of 7)



9.4 Parallel and Multiprocessor 
Architectures (1 of 21)

• Parallel processing is capable of economically 
increasing system throughput while providing 
better fault tolerance.

• The limiting factor is that no matter how well an 
algorithm is parallelized, there is always some 
portion that must be done sequentially.
– Additional processors sit idle while the sequential work 

is performed.
• Thus, it is important to keep in mind that an n-fold 

increase in processing power does not necessarily 
result in an n-fold increase in throughput.



9.4 Parallel and Multiprocessor 
Architectures (2 of 21)

• Recall that pipelining divides the fetch-decode-execute 
cycle into stages that each carry out a small part of the 
process on a set of instructions.

• Ideally, an instruction exits the pipeline during each tick 
of the clock.

• Superpipelining occurs when a pipeline has stages that 
require less than half a clock cycle to complete.
– The pipeline is equipped with a separate clock running at a 

frequency that is at least double that of the main system 
clock.

• Superpipelining is only one aspect of superscalar 
design.



9.4 Parallel and Multiprocessor 
Architectures (3 of 21)

• Superscalar architectures include multiple 
execution units such as specialized integer and 
floating-point adders and multipliers.

• A critical component of this architecture is the 
instruction fetch unit, which can simultaneously 
retrieve several instructions from memory.

• A decoding unit determines which of these 
instructions can be executed in parallel and 
combines them accordingly.

• This architecture also requires compilers that make 
optimum use of the hardware.



9.4 Parallel and Multiprocessor 
Architectures (4 of 21)

• Very long instruction word (VLIW) architectures 
differ from superscalar architectures because the 
VLIW compiler, instead of a hardware decoding 
unit, packs independent instructions into one long 
instruction that is sent down the pipeline to the 
execution units.

• One could argue that this is the best approach 
because the compiler can better identify instruction 
dependencies.

• However, compilers tend to be conservative and 
cannot have a view of the run time code.



9.4 Parallel and Multiprocessor 
Architectures (5 of 21)

• Vector computers are processors that operate on 
entire vectors or matrices at once.
– These systems are often called supercomputers.

• Vector computers are highly pipelined so that 
arithmetic instructions can be overlapped.

• Vector processors can be categorized according to 
how operands are accessed.
– Register-register vector processors require all 

operands to be in registers.
– Memory-memory vector processors allow operands to 

be sent from memory directly to the arithmetic units.



9.4 Parallel and Multiprocessor 
Architectures (6 of 21)

• A disadvantage of register-register vector 
computers is that large vectors must be broken into 
fixed-length segments so they will fit into the 
register sets.

• Memory-memory vector computers have a longer 
startup time until the pipeline becomes full.

• In general, vector machines are efficient because 
there are fewer instructions to fetch, and 
corresponding pairs of values can be prefetched 
because the processor knows it will have a 
continuous stream of data.



9.4 Parallel and Multiprocessor 
Architectures (7 of 21)

• MIMD systems can communicate through shared 
memory or through an interconnection network.

• Interconnection networks are often classified 
according to their topology, routing strategy, and 
switching technique.

• Of these, the topology is a major determining factor 
in the overhead cost of message passing.

• Message passing takes time owing to network 
latency and incurs overhead in the processors.



9.4 Parallel and Multiprocessor 
Architectures (8 of 21) 

• Interconnection networks can be either static or 
dynamic.

• Processor-to-memory connections usually employ 
dynamic interconnections. These can be blocking or 
nonblocking.
– Nonblocking interconnections allow connections to 

occur simultaneously.
• Processor-to-processor message-passing 

interconnections are usually static, and can employ 
any of several different topologies, as shown on the 
following slide.



9.4 Parallel and Multiprocessor 
Architectures (9 of 21)

Completely Connected Star Linear and Ring

Mesh and Mesh RingTree

Four-Dimensional Hypercube A Bus-Based Network



9.4 Parallel and Multiprocessor 
Architectures (10 of 21)

• Dynamic routing is achieved through 
switching networks that consist of crossbar 
switches or 2  2 switches.

Through Cross

Upper Broadcast Lower Broadcast



9.4 Parallel and Multiprocessor 
Architectures (11 of 21)

• Multistage 
interconnection (or 
shuffle) networks are 
the most advanced class 
of switching networks.

• They can be used in 
loosely-coupled 
distributed systems, or 
in tightly-coupled 
processor-to-memory 
configurations. 



9.4 Parallel and Multiprocessor 
Architectures (12 of 21)

• There are advantages and disadvantages to each 
switching approach.
– Bus-based networks, while economical, can be 

bottlenecks. Parallel buses can alleviate bottlenecks, 
but are costly.

– Crossbar networks are nonblocking, but require n2

switches to connect n entities.
– Omega networks are blocking networks, but exhibit 

less contention than bus-based networks. They are 
somewhat more economical than crossbar networks, n 
nodes needing log2n stages with n / 2 switches per 
stage.  



9.4 Parallel and Multiprocessor 
Architectures (13 of 21)

• Tightly-coupled multiprocessor systems use 
the same memory. They are also referred to 
as shared memory multiprocessors.

• The processors do not necessarily have to 
share the same block of physical memory.

• Each processor can have its own memory, but 
it must share it with the other processors.

• Configurations such as these are called 
distributed shared memory multiprocessors.



9.4 Parallel and Multiprocessor 
Architectures (14 of 21)

• Shared memory MIMD machines can be divided 
into two categories based upon how they access 
memory.

• In uniform memory access (UMA) systems, all 
memory accesses take the same amount of time.

• To realize the advantages of a multiprocessor 
system, the interconnection network must be fast 
enough to support multiple concurrent accesses to 
memory, or it will slow down the whole system.

• Thus, the interconnection network limits the 
number of processors in a UMA system.



9.4 Parallel and Multiprocessor 
Architectures (15 of 21)

• The other category of MIMD machines are the 
nonuniform memory access (NUMA) systems.

• While NUMA machines see memory as one 
contiguous addressable space, each processor gets 
its own piece of it.

• Thus, a processor can access its own memory much 
more quickly than it can access memory that is 
elsewhere.

• Not only does each processor have its own 
memory, it also has its own cache, a configuration 
that can lead to cache coherence problems.



9.4 Parallel and Multiprocessor 
Architectures (17 of 21)

• When a processor’s cached value is updated 
concurrently with the update to memory, we say 
that the system uses a write-through cache update 
protocol.

• If the write-through with update protocol is used, a 
message containing the update is broadcast to all 
processors so that they may update their caches.

• If the write-through with invalidate protocol is 
used, a broadcast asks all processors to invalidate 
the stale cached value.  



9.4 Parallel and Multiprocessor 
Architectures (18 of 21)

• Write-invalidate uses less bandwidth because it uses 
the network only the first time the data is updated, but 
retrieval of the fresh data takes longer.

• Write-update creates more message traffic, but all 
caches are kept current.  

• Another approach is the write-back protocol that delays 
an update to memory until the modified cache block 
must be replaced.

• At replacement time, the processor writing the cached 
value must obtain exclusive rights to the data. When 
rights are granted, all other cached copies are 
invalidated.



9.4 Parallel and Multiprocessor 
Architectures (19 of 21)

• Distributed computing is another form of 
multiprocessing. However, the term distributed 
computing means different things to different people.

• In a sense, all multiprocessor systems are distributed 
systems because the processing load is distributed 
among processors that work collaboratively.

• The common understanding is that a distributed system 
consists of very loosely-coupled processing units.

• Recently, NOWs have been used as distributed systems 
to solve large, intractable problems.



9.4 Parallel and Multiprocessor 
Architectures (20 of 21)

• For general-use computing, the details of the network 
and the nature of the multiplatform computing should 
be transparent to the users of the system.

• Remote procedure calls (RPCs) enable this 
transparency. RPCs use resources on remote machines 
by invoking procedures that reside and are executed on 
the remote machines.

• RPCs are employed by numerous vendors of distributed 
computing architectures including the Common Object 
Request Broker Architecture (CORBA) and Java’s 
Remote Method Invocation (RMI).



9.4 Parallel and Multiprocessor 
Architectures (21 of 21)

• Cloud computing is distributed computing to the 
extreme.

• It provides services over the Internet through a 
collection of loosely-coupled systems.

• In theory, the service consumer has no awareness of 
the hardware, or even its location.
– Your services and data may even be located on the same 

physical system as that of your business competitor.
– The hardware might even be located in another country.

• Security concerns are a major inhibiting factor for cloud 
computing.



9.5 Alternative Parallel 
Processing Approaches (1 of 15) 

• Some people argue that real breakthroughs in 
computational power—breakthroughs that will 
enable us to solve today’s intractable problems—
will occur only by abandoning the von Neumann 
model.

• Numerous efforts are now underway to devise 
systems that could change the way that we think 
about computers and computation.

• In this section, we will look at three of these: 
dataflow computing, neural networks, and systolic 
processing.



9.5 Alternative Parallel 
Processing Approaches (2 of 15)

• Von Neumann machines exhibit sequential control 
flow: A linear stream of instructions is fetched from 
memory, and they act upon data.

• Program flow changes under the direction of 
branching instructions.

• In dataflow computing, program control is directly 
controlled by data dependencies.

• There is no program counter or shared storage.
• Data flows continuously and is available to multiple 

instructions simultaneously.



9.5 Alternative Parallel 
Processing Approaches (3 of 15)

• A data flow graph represents the 
computation flow in a dataflow computer.

• Its nodes contain the instructions and its 
arcs indicate the data dependencies.



9.5 Alternative Parallel 
Processing Approaches (4 of 15)

• When a node has all of the data tokens it 
needs, it fires, performing the required 
operation, and consuming the token.

• The result is placed on an output arc.



9.5 Alternative Parallel 
Processing Approaches (5 of 15)

• A dataflow program to calculate N! and its 
corresponding graph are shown below.

(initial j <- n; k <- 1
while j > 1 do
new k <- * j;
new j <- j - 1;

return k)



9.5 Alternative Parallel 
Processing Approaches (6 of 15)

• The architecture of a dataflow computer 
consists of processing elements that 
communicate with one another.

• Each processing element has an enabling unit 
that sequentially accepts tokens and stores 
them in memory.

• If the node to which this token is addressed 
fires, the input tokens are extracted from 
memory and are combined with the node 
itself to form an executable packet.



9.5 Alternative Parallel 
Processing Approaches (7 of 15)

• Using the executable packet, the processing 
element’s functional unit computes any output 
values and combines them with destination 
addresses to form more tokens.

• The tokens are then sent back to the enabling unit, 
optionally enabling other nodes.

• Because dataflow machines are data driven, 
multiprocessor dataflow architectures are not 
subject to the cache coherency and contention 
problems that plague other multiprocessor 
systems.



9.5 Alternative Parallel 
Processing Approaches (8 of 15)

• Neural network computers consist of a large 
number of simple processing elements that 
individually solve a small piece of a much larger 
problem.

• They are particularly useful in dynamic situations 
that are an accumulation of previous behavior, and 
where an exact algorithmic solution cannot be 
formulated.

• Like their biological analogues, neural networks can 
deal with imprecise, probabilistic information, and 
allow for adaptive interactions.



9.5 Alternative Parallel 
Processing Approaches (9 of 15)

• Neural network processing elements (PEs) multiply 
a set of input values by an adaptable set of weights 
to yield a single output value.

• The computation carried out by each PE is 
simplistic—almost trivial—when compared to a 
traditional microprocessor. Their power lies in their 
massively parallel architecture and their ability to 
adapt to the dynamics of the problem space.

• Neural networks learn from their environments. A 
built-in learning algorithm directs this process.



9.5 Alternative Parallel 
Processing Approaches (10 of 15)

• The simplest neural net 
PE is the perceptron.

• Perceptrons are 
trainable neurons. A 
perceptron produces a 
Boolean output based 
upon the values that it 
receives from several 
inputs.



9.5 Alternative Parallel 
Processing Approaches (11 of 15)

• Perceptrons are trainable because the 
threshold and input weights are modifiable.

• In this example, the output Z is true (1) if 
the net input, w1x1 + w2x2 + . . .+ wnxn is 
greater than the threshold T.



9.5 Alternative Parallel 
Processing Approaches (12 of 15)

• Perceptrons are trained by use of supervised or 
unsupervised learning.

• Supervised learning assumes prior knowledge of 
correct results, which are fed to the neural net 
during the training phase. If the output is incorrect, 
the network modifies the input weights to produce 
correct results.

• Unsupervised learning does not provide correct 
results during training. The network adapts solely in 
response to inputs, learning to recognize patterns 
and structure in the input sets.



9.5 Alternative Parallel 
Processing Approaches (13 of 15)

• The biggest problem with neural nets is that when they 
consist of more than 10 or 20 neurons, it is impossible 
to understand how the net is arriving at its results. They 
can derive meaning from data that are too complex to 
be analyzed by people.
– The U.S. military once used a neural net to try to locate 

camouflaged tanks in a series of photographs. It turned out 
that the nets were basing their decisions on the cloud cover 
instead of the presence or absence of the tanks.

• Despite early setbacks, neural nets are gaining 
credibility in sales forecasting, data validation, and 
facial recognition.



9.5 Alternative Parallel 
Processing Approaches (14 of 15)

• Where neural nets are a model of biological 
neurons, systolic array computers are a model 
of how blood flows through a biological heart.

• Systolic arrays, a variation of SIMD computers, 
have simple processors that process data by 
circulating it through vector pipelines. 



9.5 Alternative Parallel 
Processing Approaches (15 of 15)

• Systolic arrays can sustain great throughout 
because they employ a high degree of parallelism.

• Connections are short, and the design is simple and 
scalable. They are robust, efficient, and cheap to 
produce. They are, however, highly specialized and 
limited as to they types of problems they can solve.

• They are useful for solving repetitive problems that 
lend themselves to parallel solutions using a large 
number of simple processing elements.
– Examples include sorting, image processing, and 

Fourier transformations.



9.6 Quantum Computing (1 of 8)

• Computers, as we know them are binary, transistor-
based systems.

• But transistor-based systems strain to keep up with 
our computational  demands.

• We increase the number of transistors for more 
power, and each transistor smaller to fit on the die.
– Transistors are becoming so small that it is hard for 

them to hold electrons in the way in which we're 
accustomed to.

• Thus, alternatives to transistor-based systems are 
an active area or research.



9.6 Quantum Computing (2 of 8)

• Computers are now being built based on:
– Optics (photonic computing)
– Biological neurons
– DNA

• One of the most intriguing is quantum computers.
• Quantum computing uses quantum bits (qubits) that 

can be in multiple states at once.
• The “state” of a qubit is determined by the spin of an 

electron.
• A thorough discussion of “spin” is under the domain of 

quantum physics.



9.6 Quantum Computing (3 of 8)

• A qubit can be in multiple states at the same 
time.
– This is called superpositioning.

• A 3-bit register can simultaneously hold the 
values 0 through 7.
– 8 operations can be performed at the same time.

• This phenomenon is called quantum 
parallelism.
– A system with 600 qbits can superposition 2600 

states.



9.6 Quantum Computing (4 of 8)

• D-Wave Computers is the first quantum 
computer manufacturer.

• D-Wave computers having 512 qbits were 
purchased separately by University of 
Southern California and Google for research 
purposes.

• Quantum computers may be applied in the 
areas of cryptography, true random-number 
generation, and in the solution of other 
intractable problems.



9.6 Quantum Computing (5 of 8)

• Making effective use of quantum computers 
requires rethinking our approach to problems 
and the development of new algorithms.
– To break a cypher, the quantum machine 

simulates every possible state of the problem set 
(i.e., every possible key for a cipher) and it 
“collapses” on the correct solution.

• Examples include Schor’s algorithm for 
factoring products of prime numbers.

• Many others remain to be discovered.



9.6 Quantum Computing (6 of 8)

• These systems are not constrained by a fetch-
decode-execute cycle; however, quantum 
architectures have yet to settle on a definitive 
paradigm analogous to von Neumann systems.

• Rose’s Law states that the number of qubits that 
can be assembled to successfully perform 
computations will double every 12 months; this has 
been precisely the case for the past 9 years.
– This “law” is named after Geordie Rose, D-Wave’s 

founder and chief technology officer.



9.6 Quantum Computing (7 of 8)

• One of the largest obstacles to the progress of 
quantum computation is the tendency for 
qubits to decay into a state of decoherence.
– Decoherence causes uncorrectable errors.

• Advanced error-correction algorithms have 
been applied to this problem and show 
promise.

• Much research remains to be done, however.



9.6 Quantum Computing (8 of 8)

• The realization of quantum computing has 
raised questions about technological 
singularity. 
– Technological singularity is the theoretical point 

when human technology has fundamentally and 
irreversibly altered human development.

– This is the point when civilization changes to an 
extent that its technology is incomprehensible to 
previous generations.

• Are we there, now?



Conclusion (1 of 4)

• The common distinctions between RISC and 
CISC systems include RISC’s short, fixed-length 
instructions. RISC ISAs are load-store 
architectures. These things permit RISC 
systems to be highly pipelined.

• Flynn’s Taxonomy provides a way to classify 
multiprocessor systems based upon the 
number of processors and data streams. It 
falls short of being an accurate depiction of 
today’s systems.



Conclusion (2 of 4)

• Massively parallel processors have many 
processors, distributed memory, and 
computational elements communicate 
through a network. Symmetric 
multiprocessors have fewer processors and 
communicate through shared memory.

• Characteristics of superscalar design include 
superpipelining, and specialized instruction 
fetch and decoding units.



Conclusion (3 of 4)

• Very long instruction word (VLIW) architectures 
differ from superscalar architectures because the 
compiler, instead of a decoding unit, creates long 
instructions. 

• Vector computers are highly-pipelined processors 
that operate on entire vectors or matrices at once.

• MIMD systems communicate through networks 
that can be blocking or nonblocking. The network 
topology often determines throughput.



Conclusion (4 of 4)

• Multiprocessor memory can be distributed or 
exist in a single unit. Distributed memory 
brings to rise problems with cache coherency 
that are addressed using cache coherency 
protocols.

• New architectures are being devised to solve 
intractable problems. These new architectures 
include dataflow computers, neural networks, 
systolic arrays, and quantum computers.


