
Chapter 6
Memory

Objectives

• Master the concepts of hierarchical memory
organization.

• Understand how each level of memory
contributes to system performance, and how the
performance is measured.

• Master the concepts behind cache memory,
virtual memory, memory segmentation, paging,
and address translation.

6.1 Introduction

• Memory lies at the heart of the stored-program
computer.

• In previous chapters, we studied the components
from which memory is built and the ways in
which memory is accessed by various ISAs.

• In this chapter, we focus on memory
organization. A clear understanding of these ideas
is essential for the analysis of system
performance.

6.2 Types of Memory (1 of 2)

• There are two kinds of main memory: random access
memory (RAM) and read-only-memory (ROM).

• There are two types of RAM: dynamic RAM (DRAM)
and static RAM (SRAM).

• DRAM consists of capacitors that slowly leak their
charge over time. Thus, they must be refreshed every
few milliseconds to prevent data loss.

• DRAM is “cheap” memory owing to its simple design.

6.2 Types of Memory (2 of 2)

• SRAM consists of circuits similar to the D flip-flop that
we studied in Chapter 3.

• SRAM is very fast memory and it doesn’t need to be
refreshed like DRAM does. It is used to build cache
memory, which we will discuss in detail later.

• ROM also does not need to be refreshed, either. In
fact, it needs very little charge to retain its memory.

• ROM is used to store permanent, or semi-permanent
data that persists even while the system is turned off.

6.3 The Memory Hierarchy (1 of 6)

• Generally speaking, faster memory is more expensive
than slower memory.

• To provide the best performance at the lowest cost,
memory is organized in a hierarchical fashion.

• Small, fast storage elements are kept in the CPU,
larger, slower main memory is accessed through the
data bus.

• Larger, (almost) permanent storage in the form of
disk and tape drives is still further from the CPU.

6.3 The Memory Hierarchy (2 of 6)

• This storage organization can be thought of as a
pyramid:

6.3 The Memory Hierarchy (3 of 6)

• We are most interested in the memory hierarchy that
involves registers, cache, main memory, and virtual
memory.

• Registers are storage locations available on the
processor itself.

• Virtual memory is typically implemented using a hard
drive; it extends the address space from RAM to the
hard drive.

• Virtual memory provides more space: Cache memory
provides speed.

6.3 The Memory Hierarchy (4 of 6)

• To access a particular piece of data, the CPU first
sends a request to its nearest memory, usually
cache.

• If the data is not in cache, then main memory is
queried. If the data is not in main memory, then
the request goes to disk.

• Once the data is located, then the data and a
number of its nearby data elements are fetched
into cache memory.

6.3 The Memory Hierarchy (5 of 6)

• This leads us to some definitions.
– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at a

given memory level.
– The miss rate is the percentage of time it is not.
– Miss rate = 1 – hit rate.
– The hit time is the time required to access data at a given

memory level.
– The miss penalty is the time required to process a miss,

including the time that it takes to replace a block of
memory plus the time it takes to deliver the data to the
processor.

6.3 The Memory Hierarchy (6 of 6)

• An entire block of data is copied after a hit
because the principle of locality tells us that once
a byte is accessed, it’s likely that a nearby data
element will be needed soon.

• There are three forms of locality:
– Temporal locality: Recently-accessed data elements

tend to be accessed again.
– Spatial locality: Accesses tend to cluster.
– Sequential locality: Instructions tend to be accessed

sequentially.

6.4 Cache Memory (1 of 45)

• The purpose of cache memory is to speed up accesses
by storing recently used data closer to the CPU,
instead of storing it in main memory.

• Although cache is much smaller than main memory,
its access time is a fraction of that of main memory.

• Unlike main memory, which is accessed by address,
cache is typically accessed by content; hence, it is
often called content addressable memory.

• Because of this, a single large cache memory isn’t
always desirable—it takes longer to search.

6.4 Cache Memory (2 of 45)

• The simplest cache mapping scheme is direct
mapped cache.

• In a direct mapped cache consisting of N blocks of
cache, block X of main memory maps to cache
block Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7 of
cache may hold blocks 7, 17, 27, 37, . . . of main
memory.

The next slide illustrates this mapping concept.

6.4 Cache Memory (3 of 45)

• With direct mapped cache consisting of 4 blocks
of cache, block X of main memory maps to cache
block Y = X mod 4.

6.4 Cache Memory (4 of 45)

• A larger example.

6.4 Cache Memory (5 of 45)

• To perform direct mapping, the binary main memory
address is partitioned into the fields shown below.
– The offset field uniquely identifies an address within a

specific block.
– The block field selects a unique block of cache.
– The tag field is whatever is left over.

– The sizes of these fields are determined by characteristics of
both memory and cache.

6.4 Cache Memory (6 of 45)

• Example 6.1: Consider a byte-addressable main
memory consisting of 4 blocks, and a cache with 2
blocks, where each block is 4 bytes.

• This means Block 0 and 2 of main memory map to
Block 0 of cache, and Blocks 1 and 3 of main
memory map to Block 1 of cache.

• Using the tag, block, and offset fields, we can see
how main memory maps to cache as follows.

6.4 Cache Memory (7 of 45)

• Example 6.1: Cont’d. Consider a byte-addressable
main memory consisting of 4 blocks, and a cache with
2 blocks, where each block is 4 bytes.
– First, we need to determine the address format for

mapping. Each block is 4 bytes, so the offset field must
contain 2 bits; there are 2 blocks in cache, so the block field
must contain 1 bit; this leaves 1 bit for the tag (as a main
memory address has 4 bits because there are a total of 24 =
16 bytes).

6.4 Cache Memory (8 of 45)

• Example 6.1: Cont’d.
– Suppose we need to access

main memory address 316
(0x0011 in binary). If we
partition 0x0011 using the
address format from Figure a,
we get Figure b.

– Thus, the main memory address
0x0011 maps to cache block 0.

– Figure c shows this mapping,
along with the tag that is also
stored with the data.

The next slide illustrates another mapping.

6.4 Cache Memory (9 of 45)

6.4 Cache Memory (10 of 45)

• Example 6.2: Assume a byte-addressable memory
consists of 214 bytes, cache has 16 blocks, and each
block has 8 bytes.
– The number of memory blocks are:
– Each main memory address requires 14 bits. Of this 14-bit

address field, the rightmost 3 bits reflect the offset field.
– We need 4 bits to select a specific block in cache, so the

block field consists of the middle 4 bits.
– The remaining 7 bits make up the tag field.

6.4 Cache Memory (11 of 45)

• Example 6.3: Assume a byte-addressable memory
consisting of 16 bytes divided into 8 blocks. Cache
contains 4 blocks. We know:
– A memory address has 4 bits.
– The 4-bit memory address is divided into the fields

below.

6.4 Cache Memory (12 of 45)

• Example 6.3: Cont’d. The
mapping for memory
references is shown below:

6.4 Cache Memory (13 of 45)

• Example 6.4: Consider 16-bit memory addresses
and 64 blocks of cache where each block contains
8 bytes. We have:
– 3 bits for the offset
– 6 bits for the block
– 7 bits for the tag

• A memory reference for 0x0404 maps as follows:

6.4 Cache Memory (14 of 45)

• In summary, direct mapped cache maps main
memory blocks in a modular fashion to cache
blocks. The mapping depends on:
– The number of bits in the main memory address (how

many addresses exist in main memory).
– The number of blocks are in cache (which determines

the size of the block field).
– How many addresses (either bytes or words) are in a

block (which determines the size of the offset field)?

6.4 Cache Memory (15 of 45)

• Suppose instead of placing memory blocks in
specific cache locations based on memory
address, we could allow a block to go anywhere in
cache.

• In this way, cache would have to fill up before any
blocks are evicted.

• This is how fully associative cache works.
• A memory address is partitioned into only two

fields: the tag and the offset.

6.4 Cache Memory (16 of 45)

• Suppose, as before, we have 14-bit memory
addresses and a cache with 16 blocks, each block of
size 8. The field format of a memory reference is:

• When the cache is searched, all tags are searched in
parallel to retrieve the data quickly.

• This requires special, costly hardware.

6.4 Cache Memory (17 of 45)

• You will recall that direct mapped cache evicts a
block whenever another memory reference
needs that block.

• With fully associative cache, we have no such
mapping, thus we must devise an algorithm to
determine which block to evict from the cache.

• The block that is evicted is the victim block.
• There are a number of ways to pick a victim, we

will discuss them shortly.

6.4 Cache Memory (18 of 45)

• Set associative cache combines the ideas of direct
mapped cache and fully associative cache.

• An N-way set associative cache mapping is like direct
mapped cache in that a memory reference maps to a
particular location in cache.

• Unlike direct mapped cache, a memory reference
maps to a set of several cache blocks, similar to the
way in which fully associative cache works.

• Instead of mapping anywhere in the entire cache, a
memory reference can map only to the subset of
cache slots.

6.4 Cache Memory (19 of 45)

• The number of cache blocks
per set in set associative
cache varies according to
overall system design.
– For example, a 2-way set

associative cache can be
conceptualized as shown in
the schematic below.

– Each set contains two
different memory blocks.

6.4 Cache Memory (20 of 45)

• In set associative cache mapping, a memory
reference is divided into three fields: tag, set, and
offset.

• As with direct-mapped cache, the offset field
chooses the byte within the cache block, and the
tag field uniquely identifies the memory address.

• The set field determines the set to which the
memory block maps.

6.4 Cache Memory (21 of 45)

• Example 6.5: Suppose we are using 2-way set
associative mapping with a byte-addressable
main memory of 214 bytes and a cache with 16
blocks, where each block contains 8 bytes.
– Cache has a total of 16 blocks, and each set has 2

blocks, then there are 8 sets in cache.
– Thus, the set field is 3 bits, the offset field is 3 bits, and

the tag field is 8 bits.

6.4 Cache Memory (22 of 45)

• Example 6.6: Suppose a byte-addressable
memory contains 1MB and cache consists of 32
blocks, where each block contains 16 bytes. Using
direct mapping, fully associative mapping, and a
4-way set associative mapping, determine where
the main memory address 0x326A0 maps to in
cache.
– First note that a main memory address has 20 bits. The

main memory address for direct mapped cache is
shown below.

6.4 Cache Memory (23 of 45)

• Example 6.6:
– If we represent our main memory address 0x326A0 in

binary and place the bits into the format, we get:

– So this address maps to cache block 01010 (or block
10).

6.4 Cache Memory (24 of 45)

• Example 6.6: Cont’d.
– If we are using fully associative cache, we have:

– But because it is fully associative, it could map
anywhere.

6.4 Cache Memory (25 of 45)

• Example 6.6: Cont’d.
– If we are using 4-way set associative cache, we have:

– If we divide the main memory address into these
fields, we get:

6.4 Cache Memory (26 of 45)

• Example 6.7: A byte-addressable computer with
an 8-block cache of 4 bytes each, trace memory
accesses: 0x01, 0x04, 0x09, 0x05, 0x14, 0x21, and
0x01 for each mapping approach.

• The address format for direct mapped cache is:

Our trace is on the next slide.

6.4 Cache Memory (27 of 45)

6.4 Cache Memory (28 of 45)

• Example 6.7: Cont’d. A byte-addressable
computer with an 8-block cache of 4 bytes each,
trace memory accesses: 0x01, 0x04, 0x09, 0x05,
0x14, 0x21, and 0x01 for each mapping approach.

• The address format for fully associative cache is:

Our trace is on the next slide.

6.4 Cache Memory (29 of 45)

6.4 Cache Memory (30 of 45)

• EXAMPLE 6.7: Cont’d. A byte-addressable
computer with an 8-block cache of 4 bytes each,
trace memory accesses: 0x01, 0x04, 0x09, 0x05,
0x14, 0x21, and 0x01 for each mapping approach.

• The address format for 2-way set-associative
cache is:

Our trace is on the next slide.

6.4 Cache Memory (31 of 45)

6.4 Cache Memory (32 of 45)

• With fully associative and set associative cache, a
replacement policy is invoked when it becomes
necessary to evict a block from cache.

• An optimal replacement policy would be able to
look into the future to see which blocks won’t be
needed for the longest period of time.

• Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as
a benchmark for assessing the efficiency of any
other scheme we come up with.

6.4 Cache Memory (33 of 45)

• The replacement policy that we choose depends
upon the locality that we are trying to optimize—
usually, we are interested in temporal locality.

• A least recently used (LRU) algorithm keeps track of
the last time that a block was assessed and evicts the
block that has been unused for the longest period of
time.

• The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each block,
which ultimately slows down the cache.

6.4 Cache Memory (34 of 45)

• First-in, first-out (FIFO) is a popular cache
replacement policy.

• In FIFO, the block that has been in the cache the
longest, regardless of when it was last used.

• A random replacement policy does what its name
implies: It picks a block at random and replaces it
with a new block.

• Random replacement can certainly evict a block that
will be needed often or needed soon, but it never
thrashes.

6.4 Cache Memory (35 of 45)

• The performance of hierarchical memory is measured
by its effective access time (EAT).

• EAT is a weighted average that takes into account the
hit ratio and relative access times of successive levels
of memory.

• The EAT for a two-level memory is given by:
EAT = H  AccessC + (1 – H)  AccessMM

where H is the cache hit rate and AccessC and
AccessMM are the access times for cache and main
memory, respectively.

6.4 Cache Memory (36 of 45)

• For example, consider a system with a main
memory access time of 200ns supported by a
cache having a 10ns access time and a hit rate of
99%.

• Suppose access to cache and main memory
occurs concurrently (the accesses overlap).

• The EAT is:
0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns

6.4 Cache Memory (37 of 45)

• For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

• If the accesses do not overlap, the EAT is:
0.99(10ns) + 0.01(10ns + 200ns)
= 9.9ns + 2.01ns = 12ns

• This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

6.4 Cache Memory (38 of 45)

• Caching is depends upon programs exhibiting
good locality.
– Some object-oriented programs have poor locality

owing to their complex, dynamic structures.
– Arrays stored in column-major rather than row-major

order can be problematic for certain cache
organizations.

• With poor locality, caching can actually cause
performance degradation rather than
performance improvement.

6.4 Cache Memory (39 of 45)

• Cache replacement policies must take into account
dirty blocks, those blocks that have been updated
while they were in the cache.

• Dirty blocks must be written back to memory. A write
policy determines how this will be done.

• There are two types of write policies, write through
and write back.

• Write through updates cache and main memory
simultaneously on every write.

• Write back (also called copyback) updates memory
only when the block is selected for replacement.

6.4 Cache Memory (40 of 45)

• The disadvantage of write through is that
memory must be updated with each cache write,
which slows down the access time on updates.
This slowdown is usually negligible, because the
majority of accesses tend to be reads, not writes.

• The advantage of write back is that memory
traffic is minimized, but its disadvantage is that
memory does not always agree with the value in
cache, causing problems in systems with many
concurrent users.

6.4 Cache Memory (41 of 45)

• The cache we have been discussing is called a unified
or integrated cache where both instructions and data
are cached.

• Many modern systems employ separate caches for
data and instructions.
– This is called a Harvard cache.

• The separation of data from instructions provides
better locality, at the cost of greater complexity.
– Simply making the cache larger provides about the same

performance improvement without the complexity.

6.4 Cache Memory (42 of 45)

• Cache performance can also be improved by
adding a small associative cache to hold blocks
that have been evicted recently.
– This is called a victim cache.

• A trace cache is a variant of an instruction cache
that holds decoded instructions for program
branches, giving the illusion that noncontiguous
instructions are really contiguous.

6.4 Cache Memory (43 of 45)

• Most of today’s small systems employ multilevel
cache hierarchies.

• The levels of cache form their own small memory
hierarchy.

• Level 1 cache (8KB to 64KB) is situated on the
processor itself.
– Access time is typically about 4ns.

• Level 2 cache (64KB to 2MB) may be on the
motherboard, or on an expansion card.
– Access time is usually around 15–20ns.

6.4 Cache Memory (44 of 45)

• In systems that employ three levels of cache, the
Level 2 cache is placed on the same die as the
CPU (reducing access time to about 10ns).

• Accordingly, the Level 3 cache (2MB to 256MB)
refers to cache that is situated between the
processor and main memory.

• Once the number of cache levels is determined,
the next thing to consider is whether data (or
instructions) can exist in more than one cache
level.

6.4 Cache Memory (45 of 45)

• If the cache system used an inclusive cache, the same
data may be present at multiple levels of cache.

• Strictly inclusive caches guarantee that all data in a
smaller cache also exists at the next higher level.

• Exclusive caches permit only one copy of the data.
• The tradeoffs in choosing one over the other involve

weighing the variables of access time, memory size,
and circuit complexity.

6.5 Virtual Memory (1 of 26)

• Cache memory enhances performance by providing
faster memory access speed.

• Virtual memory enhances performance by providing
greater memory capacity, without the expense of
adding main memory.

• Instead, a portion of a disk drive serves as an
extension of main memory.

• If a system uses paging, virtual memory partitions
main memory into individually managed page frames,
that are written (or paged) to disk when they are not
immediately needed.

6.5 Virtual Memory (2 of 26)

• A physical address is the actual memory address of
physical memory.

• Programs create virtual addresses that are mapped to
physical addresses by the memory manager.

• Page faults occur when a logical address requires that
a page be brought in from disk.

• Memory fragmentation occurs when the paging
process results in the creation of small, unusable
clusters of memory addresses.

6.5 Virtual Memory (3 of 26)

• Main memory and virtual memory are divided into
equal sized pages.

• The entire address space required by a process need
not be in memory at once. Some parts can be on disk,
while others are in main memory.

• Further, the pages allocated to a process do not need
to be stored contiguously—either on disk or in
memory.

• In this way, only the needed pages are in memory at
any time, the unnecessary pages are in slower disk
storage.

6.5 Virtual Memory (4 of 26)

• Information concerning the location of each page,
whether on disk or in memory, is maintained in a
data structure called a page table (shown below).

• There is one page table for each active process.

6.5 Virtual Memory (5 of 26)

• When a process generates a virtual address, the
operating system translates it into a physical memory
address.

• To accomplish this, the virtual address is divided into
two fields: A page field, and an offset field.

• The page field determines the page location of the
address, and the offset indicates the location of the
address within the page.

• The logical page number is translated into a physical
page frame through a lookup in the page table.

6.5 Virtual Memory (6 of 26)

• If the valid bit is zero in the page table entry for the
logical address, this means that the page is not in
memory and must be fetched from disk.
– This is a page fault.
– If necessary, a page is evicted from memory and is replaced

by the page retrieved from disk, and the valid bit is set to 1.
• If the valid bit is 1, the virtual page number is

replaced by the physical frame number.
• The data is then accessed by adding the offset to the

physical frame number.

6.5 Virtual Memory (7 of 26)

• As an example, suppose a system has a virtual address space of
8K and a physical address space of 4K, and the system uses
byte addressing.
– We have 213/210 = 23 virtual pages.

• A virtual address has 13 bits (8K = 213) with 3 bits for the page
field and 10 for the offset, because the page size is 1024.

• A physical memory address requires 12 bits, the first 2 bits for
the page frame and the trailing 10 bits the offset.

6.5 Virtual Memory (8 of 26)

• Suppose we have the page table shown below.

• What happens when the CPU generates address
545910 = 10101010100112 = 0x1553?

6.5 Virtual Memory (9 of 26)

• What happens when the CPU generates address
545910 = 10101010100112 = 0x1553?

• The high-order 3 bits of the virtual address, 101 (510),
provide the page number in the page table.

6.5 Virtual Memory (10 of 26)

• The address 10101010100112 is converted to physical
address 0101010100112 = 0x1363 because the page
field 101 is replaced by frame number 01 through a
lookup in the page table.

6.5 Virtual Memory (11 of 26)

• What happens when the CPU generates address
10000000001002?

6.5 Virtual Memory (12 of 26)

• We said earlier that effective access time (EAT)
takes all levels of memory into consideration.

• Thus, virtual memory is also a factor in the
calculation, and we also have to consider page
table access time.

• Suppose a main memory access takes 200ns, the
page fault rate is 1%, and it takes 10ms to load a
page from disk. We have:
– EAT = 0.99(200ns + 200ns) 0.01(10ms) = 100, 396ns

6.5 Virtual Memory (13 of 26)

• Even if we had no page faults, the EAT would be
400ns because memory is always read twice:
First to access the page table, and second to
load the page from memory.

• Because page tables are read constantly, it
makes sense to keep them in a special cache
called a translation look-aside buffer (TLB).

• TLBs are a special associative cache that stores
the mapping of virtual pages to physical pages.

The next slide shows address lookup steps when a TLB is involved.

6.5 Virtual Memory (14 of 26)

• TLB lookup process
– Extract the page number from the virtual

address.
– Extract the offset from the virtual

address.
– Search for the virtual page number in the

TLB.
– If the (virtual page #, page frame #) pair is

found in the TLB, add the offset to the
physical frame number and access the
memory location.

– If there is a TLB miss, go to the page table
to get the necessary frame number. If the
page is in memory, use the corresponding
frame number and add the offset to yield
the physical address.

– If the page is not in main memory,
generate a page fault and restart the
access when the page fault is complete.

6.5 Virtual Memory (15 of 26)
Putting it all together: The TLB, Page Table, and Main Memory

6.5 Virtual Memory (16 of 26)

• Another approach to virtual memory is the use of
segmentation.

• Instead of dividing memory into equal-sized pages, virtual
address space is divided into variable-length segments,
often under the control of the programmer.

• A segment is located through its entry in a segment table,
which contains the segment’s memory location and a
bounds limit that indicates its size.

• After a page fault, the operating system searches for a
location in memory large enough to hold the segment
that is retrieved from disk.

6.5 Virtual Memory (17 of 26)

• Both paging and segmentation can cause
fragmentation.

• Paging is subject to internal fragmentation because a
process may not need the entire range of addresses
contained within the page. Thus, there may be many
pages containing unused fragments of memory.

• Segmentation is subject to external fragmentation,
which occurs when contiguous chunks of memory
become broken up as segments are allocated and
deallocated over time.

The next slides illustrate internal and external fragmentation.

6.5 Virtual Memory (18 of 26)

• Consider a small computer
having 32K of memory.

• The 32K memory is divided into
8 page frames of 4K each.

• A schematic of this
configuration is shown at the
right.

• The numbers at the right are
memory frame addresses.

6.5 Virtual Memory (19 of 26)

• Suppose there are four
processes waiting to be
loaded into the system
with memory
requirements as shown
in the table.

• We observe that these
processes require 31K
of memory.

6.5 Virtual Memory (20 of 26)

• When the first three processes are loaded,
memory looks like this:

• All of the frames are occupied by three of the
processes.

6.5 Virtual Memory (21 of 26)

• Despite the fact that there are enough free bytes in
memory to load the fourth process, P4 has to wait for one
of the other three to terminate, because there are no
unallocated frames.

• This is an example of internal fragmentation.

6.5 Virtual Memory (22 of 26)

• Suppose that instead of
frames, our 32K system
uses segmentation.

• The memory segments of
two processes is shown in
the table at the right.

• The segments can be
allocated anywhere in
memory.

6.5 Virtual Memory (23 of 26)

• All of the segments of P1 and one of
the segments of P2 are loaded as
shown at the right.

• Segment S2 of process P2 requires
11K of memory, and there is only 1K
free, so it waits.

6.5 Virtual Memory (24 of 26)

• Eventually, Segment 2 of Process 1 is
no longer needed, so it is unloaded
giving 11K of free memory.

• But Segment 2 of Process 2 cannot be
loaded because the free memory is not
contiguous.

6.5 Virtual Memory (25 of 26)

• Over time, the problem gets
worse, resulting in small unusable
blocks scattered throughout
physical memory.

• This is an example of external
fragmentation.

• Eventually, this memory is
recovered through compaction,
and the process starts over.

6.5 Virtual Memory (26 of 26)

• Large page tables are cumbersome and slow, but with
its uniform memory mapping, page operations are
fast. Segmentation allows fast access to the segment
table, but segment loading is labor-intensive.

• Paging and segmentation can be combined to take
advantage of the best features of both by assigning
fixed-size pages within variable-sized segments.

• Each segment has a page table. This means that a
memory address will have three fields, one for the
segment, another for the page, and a third for the
offset.

6.6 A Real-World Example
(1 of 2)

• The Pentium architecture supports both paging and
segmentation, and they can be used in various
combinations including unpaged unsegmented,
segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and L2),
both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2 cache
sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).

The next slide shows this organization schematically.

6.6 A Real-World Example (2 of 2)

Conclusion (1 of 2)

• Computer memory is organized in a hierarchy, with
the smallest, fastest memory at the top and the
largest, slowest memory at the bottom.

• Cache memory gives faster access to main memory,
while virtual memory uses disk storage to give the
illusion of having a large main memory.

• Cache maps blocks of main memory to blocks of
cache memory. Virtual memory maps page frames to
virtual pages.

• There are three general types of cache: direct
mapped, fully associative, and set associative.

Conclusion (2 of 2)

• With fully associative and set associative cache,
as well as with virtual memory, replacement
policies must be established.

• Replacement policies include LRU, FIFO, or LFU.
These policies must also take into account what
to do with dirty blocks.

• All virtual memory must deal with fragmentation,
internal for paged memory, external for
segmented memory.

