
Chapter 6
Memory



Objectives

• Master the concepts of hierarchical memory 
organization.

• Understand how each level of memory 
contributes to system performance, and how the 
performance is measured.

• Master the concepts behind cache memory, 
virtual memory, memory segmentation, paging, 
and address translation.



6.1 Introduction

• Memory lies at the heart of the stored-program 
computer.

• In previous chapters, we studied the components 
from which memory is built and the ways in 
which memory is accessed by various ISAs.

• In this chapter, we focus on memory 
organization. A clear understanding of these ideas 
is essential for the analysis of system 
performance.



6.2 Types of Memory (1 of 2)

• There are two kinds of main memory: random access 
memory (RAM) and read-only-memory (ROM).

• There are two types of RAM: dynamic RAM (DRAM) 
and static RAM (SRAM).

• DRAM consists of capacitors that slowly leak their 
charge over time. Thus, they must be refreshed every 
few milliseconds to prevent data loss.

• DRAM is “cheap” memory owing to its simple design.



6.2 Types of Memory (2 of 2)

• SRAM consists of circuits similar to the D flip-flop that 
we studied in Chapter 3.

• SRAM is very fast memory and it doesn’t need to be 
refreshed like DRAM does. It is used to build cache 
memory, which we will discuss in detail later.

• ROM also does not need to be refreshed, either. In 
fact, it needs very little charge to retain its memory.

• ROM is used to store permanent, or semi-permanent 
data that persists even while the system is turned off.



6.3 The Memory Hierarchy (1 of 6)

• Generally speaking, faster memory is more expensive 
than slower memory.

• To provide the best performance at the lowest cost, 
memory is organized in a hierarchical fashion.

• Small, fast storage elements are kept in the CPU, 
larger, slower main memory is accessed through the 
data bus.

• Larger, (almost) permanent storage in the form of 
disk and tape drives is still further from the CPU.



6.3 The Memory Hierarchy (2 of 6)

• This storage organization can be thought of as a 
pyramid:



6.3 The Memory Hierarchy (3 of 6)

• We are most interested in the memory hierarchy that 
involves registers, cache, main memory, and virtual 
memory.

• Registers are storage locations available on the 
processor itself.

• Virtual memory is typically implemented using a hard 
drive; it extends the address space from RAM to the 
hard drive.

• Virtual memory provides more space: Cache memory 
provides speed.



6.3 The Memory Hierarchy (4 of 6)

• To access a particular piece of data, the CPU first 
sends a request to its nearest memory, usually 
cache.  

• If the data is not in cache, then main memory is 
queried. If the data is not in main memory, then 
the request goes to disk.

• Once the data is located, then the data and a 
number of its nearby data elements are fetched 
into cache memory.



6.3 The Memory Hierarchy (5 of 6)

• This leads us to some definitions.
– A hit is when data is found at a given memory level.
– A miss is when it is not found.
– The hit rate is the percentage of time data is found at a 

given memory level.
– The miss rate is the percentage of time it is not. 
– Miss rate = 1 – hit rate.
– The hit time is the time required to access data at a given 

memory level.
– The miss penalty is the time required to process a miss, 

including the time that it takes to replace a block of 
memory plus the time it takes to deliver the data to the 
processor.



6.3 The Memory Hierarchy (6 of 6)

• An entire block of data is copied after a hit 
because the principle of locality tells us that once 
a byte is accessed, it’s likely that a nearby data 
element will be needed soon.

• There are three forms of locality:
– Temporal locality: Recently-accessed data elements 

tend to be accessed again.
– Spatial locality: Accesses tend to cluster.
– Sequential locality: Instructions tend to be accessed 

sequentially.



6.4 Cache Memory (1 of 45)

• The purpose of cache memory is to speed up accesses 
by storing recently used data closer to the CPU, 
instead of storing it in main memory.

• Although cache is much smaller than main memory, 
its access time is a fraction of that of main memory.

• Unlike main memory, which is accessed by address, 
cache is typically accessed by content; hence, it is 
often called content addressable memory.

• Because of this, a single large cache memory isn’t 
always desirable—it takes longer to search.



6.4 Cache Memory (2 of 45)

• The simplest cache mapping scheme is direct 
mapped cache.

• In a direct mapped cache consisting of N blocks of 
cache, block X of main memory maps to cache 
block Y = X mod N.

• Thus, if we have 10 blocks of cache, block 7 of 
cache may hold blocks 7, 17, 27, 37, . . . of main 
memory.

The next slide illustrates this mapping concept.



6.4 Cache Memory (3 of 45)

• With direct mapped cache consisting of 4 blocks 
of cache, block X of main memory maps to cache 
block Y = X mod 4.



6.4 Cache Memory (4 of 45)

• A larger example.



6.4 Cache Memory (5 of 45)

• To perform direct mapping, the binary main memory 
address is partitioned into the fields shown below.
– The offset field uniquely identifies an address within a 

specific block.
– The block field selects a unique block of cache.
– The tag field is whatever is left over.

– The sizes of these fields are determined by characteristics of 
both memory and cache.



6.4 Cache Memory (6 of 45)

• Example 6.1: Consider a byte-addressable main 
memory consisting of 4 blocks, and a cache with 2 
blocks, where each block is 4 bytes. 

• This means Block 0 and 2 of main memory map to 
Block 0 of cache, and Blocks 1 and 3 of main 
memory map to Block 1 of cache.

• Using the tag, block, and offset fields, we can see 
how main memory maps to cache as follows.



6.4 Cache Memory (7 of 45)

• Example 6.1: Cont’d. Consider a byte-addressable 
main memory consisting of 4 blocks, and a cache with 
2 blocks, where each block is 4 bytes. 
– First, we need to determine the address format for 

mapping. Each block is 4 bytes, so the offset field must 
contain 2 bits; there are 2 blocks in cache, so the block field 
must contain 1 bit; this leaves 1 bit for the tag (as a main 
memory address has 4 bits because there are a total of 24 = 
16 bytes).



6.4 Cache Memory (8 of 45)

• Example 6.1: Cont’d.
– Suppose we need to access 

main memory address 316
(0x0011 in binary). If we 
partition 0x0011 using the 
address format from Figure a, 
we get Figure b.

– Thus, the main memory address 
0x0011 maps to cache block 0.

– Figure c shows this mapping, 
along with the tag that is also 
stored with the data.

The next slide illustrates another mapping.



6.4 Cache Memory (9 of 45)



6.4 Cache Memory (10 of 45)

• Example 6.2: Assume a byte-addressable memory 
consists of 214 bytes, cache has 16 blocks, and each 
block has 8 bytes. 
– The number of memory blocks are:
– Each main memory address requires 14 bits. Of this 14-bit 

address field, the rightmost 3 bits reflect the offset field. 
– We need 4 bits to select a specific block in cache, so the 

block field consists of the middle 4 bits. 
– The remaining 7 bits make up the tag field. 



6.4 Cache Memory (11 of 45)

• Example 6.3: Assume a byte-addressable memory 
consisting of 16 bytes divided into 8 blocks. Cache 
contains 4 blocks. We know:
– A memory address has 4 bits.
– The 4-bit memory address is divided into the fields 

below. 



6.4 Cache Memory (12 of 45)

• Example 6.3: Cont’d. The 
mapping for memory 
references is shown below:



6.4 Cache Memory (13 of 45)

• Example 6.4: Consider 16-bit memory addresses 
and 64 blocks of cache where each block contains 
8 bytes. We have:
– 3 bits for the offset
– 6 bits for the block
– 7 bits for the tag

• A memory reference for 0x0404 maps as follows:



6.4 Cache Memory (14 of 45)

• In summary, direct mapped cache maps main 
memory blocks in a modular fashion to cache 
blocks. The mapping depends on:
– The number of bits in the main memory address (how 

many addresses exist in main memory).
– The number of blocks are in cache (which determines 

the size of the block field).
– How many addresses (either bytes or words) are in a 

block (which determines the size of the offset field)?



6.4 Cache Memory (15 of 45)

• Suppose instead of placing memory blocks in 
specific cache locations based on memory 
address, we could allow a block to go anywhere in 
cache.

• In this way, cache would have to fill up before any 
blocks are evicted.

• This is how fully associative cache works.  
• A memory address is partitioned into only two 

fields: the tag and the offset.



6.4 Cache Memory (16 of 45)

• Suppose, as before, we have 14-bit memory 
addresses and a cache with 16 blocks, each block of 
size 8. The field format of a memory reference is:

• When the cache is searched, all tags are searched in 
parallel to retrieve the data quickly.

• This requires special, costly hardware.



6.4 Cache Memory (17 of 45)

• You will recall that direct mapped cache evicts a 
block whenever another memory reference 
needs that block.

• With fully associative cache, we have no such 
mapping, thus we must devise an algorithm to 
determine which block to evict from the cache.

• The block that is evicted is the victim block.
• There are a number of ways to pick a victim, we 

will discuss them shortly.



6.4 Cache Memory (18 of 45)

• Set associative cache combines the ideas of direct 
mapped cache and fully associative cache.

• An N-way set associative cache mapping is like direct 
mapped cache in that a memory reference maps to a 
particular location in cache.

• Unlike direct mapped cache, a memory reference 
maps to a set of several cache blocks, similar to the 
way in which fully associative cache works.

• Instead of mapping anywhere in the entire cache, a 
memory reference can map only to the subset of 
cache slots.



6.4 Cache Memory (19 of 45)

• The number of cache blocks 
per set in set associative 
cache varies according to 
overall system design.
– For example, a 2-way set 

associative cache can be 
conceptualized as shown in 
the schematic below.

– Each set contains two 
different memory blocks.



6.4 Cache Memory (20 of 45)

• In set associative cache mapping, a memory 
reference is divided into three fields: tag, set, and 
offset.

• As with direct-mapped cache, the offset field 
chooses the byte within the cache block, and the 
tag field uniquely identifies the memory address.

• The set field determines the set to which the 
memory block maps.



6.4 Cache Memory (21 of 45)

• Example 6.5: Suppose we are using 2-way set 
associative mapping with a byte-addressable 
main memory of 214 bytes and a cache with 16 
blocks, where each block contains 8 bytes. 
– Cache has a total of 16 blocks, and each set has 2 

blocks, then there are 8 sets in cache. 
– Thus, the set field is 3 bits, the offset field is 3 bits, and 

the tag field is 8 bits. 



6.4 Cache Memory (22 of 45)

• Example 6.6: Suppose a byte-addressable 
memory contains 1MB and cache consists of 32 
blocks, where each block contains 16 bytes. Using 
direct mapping, fully associative mapping, and a 
4-way set associative mapping, determine where 
the main memory address 0x326A0 maps to in 
cache.
– First note that a main memory address has 20 bits. The 

main memory address for direct mapped cache is 
shown below.



6.4 Cache Memory (23 of 45)

• Example 6.6:
– If we represent our main memory address 0x326A0 in 

binary and place the bits into the format, we get:

– So this address maps to cache block 01010 (or block 
10).



6.4 Cache Memory (24 of 45)

• Example 6.6: Cont’d.
– If we are using fully associative cache, we have:

– But because it is fully associative, it could map 
anywhere.



6.4 Cache Memory (25 of 45)

• Example 6.6: Cont’d.
– If we are using 4-way set associative cache, we have:

– If we divide the main memory address into these 
fields, we get:



6.4 Cache Memory (26 of 45)

• Example 6.7: A byte-addressable computer with 
an 8-block cache of 4 bytes each, trace memory 
accesses: 0x01, 0x04, 0x09, 0x05, 0x14, 0x21, and 
0x01 for each mapping approach.

• The address format for direct mapped cache is:

Our trace is on the next slide.



6.4 Cache Memory (27 of 45)



6.4 Cache Memory (28 of 45)

• Example 6.7: Cont’d. A byte-addressable 
computer with an 8-block cache of 4 bytes each, 
trace memory accesses: 0x01, 0x04, 0x09, 0x05, 
0x14, 0x21, and 0x01 for each mapping approach.

• The address format for fully associative cache is:

Our trace is on the next slide.



6.4 Cache Memory (29 of 45)



6.4 Cache Memory (30 of 45)

• EXAMPLE 6.7: Cont’d. A byte-addressable 
computer with an 8-block cache of 4 bytes each, 
trace memory accesses: 0x01, 0x04, 0x09, 0x05, 
0x14, 0x21, and 0x01 for each mapping approach.

• The address format for 2-way set-associative 
cache is:

Our trace is on the next slide.



6.4 Cache Memory (31 of 45)



6.4 Cache Memory (32 of 45)

• With fully associative and set associative cache, a 
replacement policy is invoked when it becomes 
necessary to evict a block from cache.

• An optimal replacement policy would be able to 
look into the future to see which blocks won’t be 
needed for the longest period of time.

• Although it is impossible to implement an optimal 
replacement algorithm, it is instructive to use it as 
a benchmark for assessing the efficiency of any 
other scheme we come up with.



6.4 Cache Memory (33 of 45)

• The replacement policy that we choose depends 
upon the locality that we are trying to optimize—
usually, we are interested in temporal locality.

• A least recently used (LRU) algorithm keeps track of 
the last time that a block was assessed and evicts the 
block that has been unused for the longest period of 
time.

• The disadvantage of this approach is its complexity: 
LRU has to maintain an access history for each block, 
which ultimately slows down the cache.



6.4 Cache Memory (34 of 45)

• First-in, first-out (FIFO) is a popular cache 
replacement policy.

• In FIFO, the block that has been in the cache the 
longest, regardless of when it was last used.

• A random replacement policy does what its name 
implies: It picks a block at random and replaces it 
with a new block.

• Random replacement can certainly evict a block that 
will be needed often or needed soon, but it never 
thrashes.



6.4 Cache Memory (35 of 45)

• The performance of hierarchical memory is measured 
by its effective access time (EAT).

• EAT is a weighted average that takes into account the 
hit ratio and relative access times of successive levels 
of memory.

• The EAT for a two-level memory is given by:
EAT = H  AccessC + (1 – H)  AccessMM

where H is the cache hit rate and AccessC and 
AccessMM are the access times for cache and main 
memory, respectively.



6.4 Cache Memory (36 of 45)

• For example, consider a system with a main 
memory access time of 200ns supported by a 
cache having a 10ns access time and a hit rate of 
99%.

• Suppose access to cache and main memory 
occurs concurrently (the accesses overlap).

• The EAT is:
0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns



6.4 Cache Memory (37 of 45)

• For example, consider a system with a main memory 
access time of 200ns supported by a cache having a 
10ns access time and a hit rate of 99%.

• If the accesses do not overlap, the EAT is:
0.99(10ns) + 0.01(10ns + 200ns) 
= 9.9ns + 2.01ns = 12ns

• This equation for determining the effective access 
time can be extended to any number of memory 
levels, as we will see in later sections.



6.4 Cache Memory (38 of 45)

• Caching is depends upon programs exhibiting 
good locality.
– Some object-oriented programs have poor locality 

owing to their complex, dynamic structures.
– Arrays stored in column-major rather than row-major 

order can be problematic for certain cache 
organizations.

• With poor locality, caching can actually cause 
performance degradation rather than 
performance improvement.



6.4 Cache Memory (39 of 45)

• Cache replacement policies must take into account 
dirty blocks, those blocks that have been updated 
while they were in the cache.

• Dirty blocks must be written back to memory. A write 
policy determines how this will be done.

• There are two types of write policies, write through 
and write back.

• Write through updates cache and main memory 
simultaneously on every write.

• Write back (also called copyback) updates memory 
only when the block is selected for replacement.



6.4 Cache Memory (40 of 45)

• The disadvantage of write through is that 
memory must be updated with each cache write, 
which slows down the access time on updates. 
This slowdown is usually negligible, because the 
majority of accesses tend to be reads, not writes.

• The advantage of write back is that memory 
traffic is minimized, but its disadvantage is that 
memory does not always agree with the value in 
cache, causing problems in systems with many 
concurrent users.



6.4 Cache Memory (41 of 45)

• The cache we have been discussing is called a unified
or integrated cache where both instructions and data 
are cached.

• Many modern systems employ separate caches for 
data and instructions.
– This is called a Harvard cache.

• The separation of data from instructions provides 
better locality, at the cost of greater complexity.
– Simply making the cache larger provides about the same 

performance improvement without the complexity.



6.4 Cache Memory (42 of 45)

• Cache performance can also be improved by 
adding a small associative cache to hold blocks 
that have been evicted recently.
– This is called a victim cache.

• A trace cache is a variant of an instruction cache 
that holds decoded instructions for program 
branches, giving the illusion that noncontiguous 
instructions are really contiguous.



6.4 Cache Memory (43 of 45)

• Most of today’s small systems employ multilevel 
cache hierarchies.

• The levels of cache form their own small memory 
hierarchy.

• Level 1 cache (8KB to 64KB) is situated on the 
processor itself.
– Access time is typically about 4ns.

• Level 2 cache (64KB to 2MB) may be on the 
motherboard, or on an expansion card.
– Access time is usually around 15–20ns.



6.4 Cache Memory (44 of 45)

• In systems that employ three levels of cache, the 
Level 2 cache is placed on the same die as the 
CPU (reducing access time to about 10ns).

• Accordingly, the Level 3 cache (2MB to 256MB) 
refers to cache that is situated between the 
processor and main memory.

• Once the number of cache levels is determined, 
the next thing to consider is whether data (or 
instructions) can exist in more than one cache 
level.



6.4 Cache Memory (45 of 45)

• If the cache system used an inclusive cache, the same 
data may be present at multiple levels of cache. 

• Strictly inclusive caches guarantee that all data in a 
smaller cache also exists at the next higher level.

• Exclusive caches permit only one copy of the data.
• The tradeoffs in choosing one over the other involve 

weighing the variables of access time, memory size, 
and circuit complexity.



6.5 Virtual Memory (1 of 26)

• Cache memory enhances performance by providing 
faster memory access speed.

• Virtual memory enhances performance by providing 
greater memory capacity, without the expense of 
adding main memory.

• Instead, a portion of a disk drive serves as an 
extension of main memory.

• If a system uses paging, virtual memory partitions 
main memory into individually managed page frames, 
that are written (or paged) to disk when they are not 
immediately needed.



6.5 Virtual Memory (2 of 26)

• A physical address is the actual memory address of 
physical memory.

• Programs create virtual addresses that are mapped to 
physical addresses by the memory manager.

• Page faults occur when a logical address requires that 
a page be brought in from disk.

• Memory fragmentation occurs when the paging 
process results in the creation of small, unusable 
clusters of memory addresses.



6.5 Virtual Memory (3 of 26)

• Main memory and virtual memory are divided into 
equal sized pages.

• The entire address space required by a process need 
not be in memory at once. Some parts can be on disk, 
while others are in main memory.

• Further, the pages allocated to a process do not need 
to be stored contiguously—either on disk or in 
memory.

• In this way, only the needed pages are in memory at 
any time, the unnecessary pages are in slower disk 
storage.



6.5 Virtual Memory (4 of 26)

• Information concerning the location of each page, 
whether on disk or in memory, is maintained in a 
data structure called a page table (shown below).

• There is one page table for each active process.



6.5 Virtual Memory (5 of 26)

• When a process generates a virtual address, the 
operating system translates it into a physical memory 
address.

• To accomplish this, the virtual address is divided into 
two fields: A page field, and an offset field.

• The page field determines the page location of the 
address, and the offset indicates the location of the 
address within the page.

• The logical page number is translated into a physical 
page frame through a lookup in the page table.



6.5 Virtual Memory (6 of 26)

• If the valid bit is zero in the page table entry for the 
logical address, this means that the page is not in 
memory and must be fetched from disk.
– This is a page fault.
– If necessary, a page is evicted from memory and is replaced 

by the page retrieved from disk, and the valid bit is set to 1.
• If the valid bit is 1, the virtual page number is 

replaced by the physical frame number.
• The data is then accessed by adding the offset to the 

physical frame number.



6.5 Virtual Memory (7 of 26)

• As an example, suppose a system has a virtual address space of 
8K and a physical address space of 4K, and the system uses 
byte addressing.
– We have 213/210 = 23 virtual pages.

• A virtual address has 13 bits (8K = 213) with 3 bits for the page 
field and 10 for the offset, because the page size is 1024.

• A physical memory address requires 12 bits, the first 2 bits for 
the page frame and the trailing 10 bits the offset.



6.5 Virtual Memory (8 of 26)

• Suppose we have the page table shown below.

• What happens when the CPU generates address 
545910 = 10101010100112 = 0x1553? 



6.5 Virtual Memory (9 of 26)

• What happens when the CPU generates address 
545910 = 10101010100112 = 0x1553? 

• The high-order 3 bits of the virtual address, 101 (510), 
provide the page number in the page table. 



6.5 Virtual Memory (10 of 26)

• The address 10101010100112 is converted to physical 
address 0101010100112 = 0x1363 because the page 
field 101 is replaced by frame number 01 through a 
lookup in the page table.



6.5 Virtual Memory (11 of 26)

• What happens when the CPU generates address 
10000000001002?



6.5 Virtual Memory (12 of 26)

• We said earlier that effective access time (EAT) 
takes all levels of memory into consideration.

• Thus, virtual memory is also a factor in the 
calculation, and we also have to consider page 
table access time.

• Suppose a main memory access takes 200ns, the 
page fault rate is 1%, and it takes 10ms to load a 
page from disk. We have:
– EAT = 0.99(200ns + 200ns)  0.01(10ms) = 100, 396ns



6.5 Virtual Memory (13 of 26)

• Even if we had no page faults, the EAT would be 
400ns because memory is always read twice: 
First to access the page table, and second to 
load the page from memory.

• Because page tables are read constantly, it 
makes sense to keep them in a special cache 
called a translation look-aside buffer (TLB).

• TLBs are a special associative cache that stores 
the mapping of virtual pages to physical pages.

The next slide shows address lookup steps  when a TLB is involved.



6.5 Virtual Memory (14 of 26)

• TLB lookup process
– Extract the page number from the virtual 

address.
– Extract the offset from the virtual 

address.
– Search for the virtual page number in the 

TLB.
– If the (virtual page #, page frame #) pair is 

found in the TLB, add the offset to the 
physical frame number and access the 
memory location.

– If there is a TLB miss, go to the page table 
to get the necessary frame number. If the 
page is in memory, use the corresponding 
frame number and add the offset to yield 
the physical address.

– If the page is not in main memory, 
generate a page fault and restart the 
access when the page fault is complete.



6.5 Virtual Memory (15 of 26)
Putting it all together: The TLB, Page Table, and Main Memory



6.5 Virtual Memory (16 of 26)

• Another approach to virtual memory is the use of 
segmentation.

• Instead of dividing memory into equal-sized pages, virtual 
address space is divided into variable-length segments, 
often under the control of the programmer.

• A segment is located through its entry in a segment table, 
which contains the segment’s memory location and a 
bounds limit that indicates its size.  

• After a page fault, the operating system searches for a 
location in memory large enough to hold the segment 
that is retrieved from disk.



6.5 Virtual Memory (17 of 26)

• Both paging and segmentation can cause 
fragmentation.

• Paging is subject to internal fragmentation because a 
process may not need the entire range of addresses 
contained within the page. Thus, there may be many 
pages containing unused fragments of memory. 

• Segmentation is subject to external fragmentation, 
which occurs when contiguous chunks of memory 
become broken up as segments are allocated and 
deallocated over time.

The next slides illustrate internal and external fragmentation. 



6.5 Virtual Memory (18 of 26)

• Consider a small computer 
having 32K of memory.

• The 32K memory is divided into 
8 page frames of 4K each.

• A schematic of this 
configuration is shown at the 
right.

• The numbers at the right are 
memory frame addresses.



6.5 Virtual Memory (19 of 26)

• Suppose there are four 
processes waiting to be 
loaded into the system 
with memory 
requirements as shown 
in the table.

• We observe that these 
processes require 31K 
of memory.



6.5 Virtual Memory (20 of 26)

• When the first three processes are loaded, 
memory looks like this:

• All of the frames are occupied by three of the 
processes.



6.5 Virtual Memory (21 of 26)

• Despite the fact that there are enough free bytes in 
memory to load the fourth process, P4 has to wait for one 
of the other three to terminate, because there are no 
unallocated frames.

• This is an example of internal fragmentation.



6.5 Virtual Memory (22 of 26)

• Suppose that instead of 
frames, our 32K system 
uses segmentation.

• The memory segments of 
two processes is shown in 
the table at the right.

• The segments can be 
allocated anywhere in 
memory.



6.5 Virtual Memory (23 of 26)

• All of the segments of P1 and one of 
the segments of P2 are loaded as 
shown at the right.

• Segment S2 of process P2  requires 
11K of memory, and there is only 1K 
free, so it waits.



6.5 Virtual Memory (24 of 26)

• Eventually, Segment 2 of Process 1 is 
no longer needed, so it is unloaded 
giving 11K of free memory.

• But Segment 2 of Process 2 cannot be 
loaded because the free memory is not 
contiguous.



6.5 Virtual Memory (25 of 26)

• Over time, the problem gets 
worse, resulting in small unusable 
blocks scattered throughout 
physical memory.

• This is an example of external 
fragmentation.

• Eventually, this memory is 
recovered through compaction, 
and the process starts over.



6.5 Virtual Memory (26 of 26)

• Large page tables are cumbersome and slow, but with 
its uniform memory mapping, page operations are 
fast.  Segmentation allows fast access to the segment 
table, but segment loading is labor-intensive.

• Paging and segmentation can be combined to take 
advantage of the best features of both by assigning 
fixed-size pages within variable-sized segments.

• Each segment has a page table. This means that a 
memory address will have three fields, one for the 
segment, another for the page, and a third for the 
offset.



6.6 A Real-World Example
(1 of 2)

• The Pentium architecture supports both paging and 
segmentation, and they can be used in various 
combinations including unpaged unsegmented, 
segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and L2), 
both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2 cache 
sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).

The next slide shows this organization schematically. 



6.6 A Real-World Example (2 of 2)



Conclusion (1 of 2)

• Computer memory is organized in a hierarchy, with 
the smallest, fastest memory at the top and the 
largest, slowest memory at the bottom.

• Cache memory gives faster access to main memory, 
while virtual memory uses disk storage to give the 
illusion of having a large main memory.

• Cache maps blocks of main memory to blocks of 
cache memory. Virtual memory maps page frames to 
virtual pages.

• There are three general types of cache: direct 
mapped, fully associative, and set associative.



Conclusion (2 of 2)

• With fully associative and set associative cache, 
as well as with virtual memory, replacement 
policies must be established.

• Replacement policies include LRU, FIFO, or LFU. 
These policies must also take into account what 
to do with dirty blocks.

• All virtual memory must deal with fragmentation, 
internal for paged memory, external for 
segmented memory.


