
Chapter 11

Performance
Measurement and

Analysis (E)

This is the fifth

lecture of

Chapter 11

Quick review of last lecture

• CPU Performance Optimization
– Branch optimization

• Delayed branching
• Branch prediction

– Fixed predictions
– Dynamic prediction
– Static prediction

– User code optimization
• Operation counting
• Loop optimization

– Loop unrolling
– Loop fusion
– Loop fission

11.6 Disk Performance (1 of 23)
1. Understanding the problem

• Optimal disk performance is critical to system
throughput.

• Disk drives are the slowest memory component, with
the fastest access times one million times longer than
main memory access times.

• A slow disk system can choke transaction processing
and drag down the performance of all programs when
virtual memory paging is involved.

• Low CPU utilization can actually indicate a problem in
the I/O subsystem, because the CPU spends more time
waiting than running.

11.6 Disk Performance (2 of 23)

• Disk utilization is the measure of the percentage of the
time that the disk is busy servicing I/O requests.

• It gives the probability that the disk will be busy when
another I/O request arrives in the disk service queue.

• Disk utilization is determined by the speed of the disk
and the rate at which requests arrive in the service
queue. Stated mathematically:
– Utilization = Request Arrival Rate  Disk Service Rate.

• where the arrival rate is given in requests per second,
and the disk service rate is given in I/O operations per
second (IOPS)

11.6 Disk Performance (3 of 23)

• The amount of time that a request spends in the
queue is directly related to the service time and the
probability that the disk is busy, and it is indirectly
related to the probability that the disk is idle.

• In formula form, we have:
Time in Queue = (Service time  Utilization) 

(1 – Utilization)

• The important relationship between queue time
and utilization (from the formula above) is shown
graphically on the next slide.

11.6 Disk Performance (4 of 23)

• The “knee” of the
curve is around 78%.
This is why 80% is the
rule-of-thumb upper
limit for utilization for
most disk drives.

• Beyond that, queue
time quickly becomes
excessive.

11.6 Disk Performance (5 of 23)
2. Physical Considerations

• The manner in which files are organized on a disk
greatly affects throughput.

• Disk arm motion is the greatest consumer of service
time.

• Disk specifications cite average seek time, which is
usually in the range of 5 to 10ms.

• However, a full-stroke seek can take as long as 15
to 20ms.

• Clever disk scheduling algorithms endeavor to
minimize seek time.

11.6 Disk Performance (6 of 23)
3. Logical Consideration

• The most naïve disk scheduling policy is first-come,
first-served (FCFS).

• As its name implies, FCFS services all I/O requests in
the order in which they arrive in the queue.

• With this approach, there is no real control over
arm motion, so random, wide sweeps across the
disk are possible.

• The next slide illustrates the arm motion of FCFS.

11.6 Disk Performance (7 of 23)

• Using FCFS,
performance is
unpredictable and
widely variable.

• Initially, at track 40
• Requests to read

tracks
– 28, 35, 52, 6, 46, 62,

19, 75, 21

11.6 Disk Performance (8 of 23)

• Arm motion is reduced when requests are ordered
so that the disk arm moves only to the track
nearest its current location.

• This is the idea employed by the shortest seek time
first (SSTF) scheduling algorithm.

• Disk track requests are queued and selected so that
the minimum arm motion is involved in servicing
the request.

• The next slide illustrates the arm motion of SSTF.

11.6 Disk Performance (9 of 23)

• Shortest Seek Time
First (SSTF)

• Disk schedule using
SSTF
– Initially, at track 40

– 35, 28, 21, 19, 6, 46,
52, 62, 75

11.6 Disk Performance (10 of 23)

• With SSTF, starvation is possible: A track request
for a “remote” track could keep getting shoved to
the back of the queue, and nearer requests are
serviced.
– Interestingly, this problem is at its worst with low disk

utilization rates.

• To avoid starvation, fairness can be enforced by
having the disk arm continually sweep over the
surface of the disk, stopping when it reaches a track
for which it has a request.
– This approach is called an elevator algorithm.

11.6 Disk Performance (11 of 23)

• In the context of disk scheduling, the elevator
algorithm is known as SCAN (which is not an
acronym).

• While SCAN entails a lot of arm motion, the motion
is constant and predictable.

• Moreover, the arm changes direction only twice: At
the center and at the outermost edges of the disk.

• The next slide illustrates the arm motion of SCAN.

11.6 Disk Performance (12 of 23)

• SCAN Disk Scheduling

• Disk schedule using
SCAN
– Initially, at track 40

– 46, 52, 62, 75, 35,
28, 21, 19, 6

11.6 Disk Performance (13 of 23)

• A SCAN variant, called C-SCAN for circular SCAN,
treats track zero as if it is adjacent to the highest-
numbered track on the disk.

• The arm moves in one direction only, providing a
simpler SCAN implementation.

• The following slide illustrates a series of read
requests where after track 75 is read, the arm
passes to track 99, and then to track 0 from which it
starts reading the lowest numbered tracks starting
with track 6.

11.6 Disk Performance (14 of 23)

• C-SCAN Disk Scheduling

• Disk schedule using C-
SCAN
– Initially, at track 40

– 46, 52, 62, 75, 6, 19,
21, 28, 35

11.6 Disk Performance (15 of 23)

• The disk arm motion of SCAN and C-SCAN can be
reduced through the use of the LOOK and C-LOOK
algorithms.

• Instead of sweeping the entire disk, the disk arm
travels only to the highest- and lowest-numbered
tracks for which access requests are pending.

• Although the circuitry is more complex, LOOK and
C-LOOK provide the best theoretical throughput,
although the circuitry is the most complex.

11.6 Disk Performance (16 of 23)

• At high utilization rates, SSTF performs slightly better
than SCAN or LOOK. But the risk of starvation persists.

• Under very low utilization (under 20%), the
performance of any of these algorithms will be
acceptable.

• No matter which scheduling algorithm is used, file
placement greatly influences performance.

• When possible, the most frequently-used files should
reside in the center tracks of the disk, and the disk
should be periodically defragmented.

11.6 Disk Performance (17 of 23)

• The best way to reduce disk arm motion is to avoid
using the disk as much as possible.

• To this end, many disk drives, or disk drive
controllers, are provided with cache memory or a
number of main memory pages set aside for the
exclusive use of the I/O subsystem.

• Disk cache memory is usually associative.
– Because associative cache searches are time-

consuming, performance can actually be better with
smaller disk caches because hit rates are usually low.

11.6 Disk Performance (18 of 23)

• Many disk drive-based caches use prefetching
techniques to reduce disk accesses.

• When using prefetching, a disk will read a number
of sectors subsequent to the one requested with
the expectation that one or more of the subsequent
sectors will be needed “soon.”

• Empirical studies have shown that over 50% of disk
accesses are sequential in nature, and that
prefetching increases performance by 40%, on
average.

11.6 Disk Performance (19 of 23)

• Prefetching is subject to cache pollution, which
occurs when the cache is filled with data that no
process needs, leaving less room for useful data.

• Various replacement algorithms, LRU, FIFO and
random, are employed to help keep the cache
clean.

• Additionally, because disk caches serve as a staging
area for data to be written to the disk, some disk
cache management schemes evict all bytes after
they have been written to the disk.

11.6 Disk Performance (20 of 23)

• With cached disk writes, we are faced with the
problem that cache is volatile memory.

• In the event of a massive system failure, data in the
cache will be lost.

• An application believes that the data has been
committed to the disk, when it really is in the
cache. If the cache fails, the data just disappears.

• To defend against power loss to the cache, some
disk controller-based caches are mirrored and
supplied with a battery backup.

11.6 Disk Performance (21 of 23)

• Another approach to combating cache failure is to
employ a write-through cache where a copy of the
data is retained in the cache in case it is needed
again “soon,” but it is simultaneously written to the
disk.

• The operating system is signaled that the I/O is
complete only after the data has actually been
placed on the disk.

• With a write-through cache, performance is
somewhat compromised to provide reliability.

11.6 Disk Performance (22 of 23)

• When throughput is more important than
reliability, a system may employ the write back
cache policy.

• Some disk drives employ opportunistic writes.

• With this approach, dirty blocks wait in the cache
until the arrival of a read request for the same
cylinder.

• The write operation is then “piggybacked” onto
the read operation.

11.6 Disk Performance (23 of 23)

• Opportunistic writes have the effect of reducing
performance on reads, but of improving it for
writes.

• The tradeoffs involved in optimizing disk
performance can present difficult choices.

• Our first responsibility is to assure data reliability
and consistency.

• No matter what its price, upgrading a disk
subsystem is always cheaper than replacing lost
data.

Conclusion (1 of 3)

• Computer performance assessment relies upon
measures of central tendency that include the
arithmetic mean, weighted arithmetic mean, the
geometric mean, and the harmonic mean.

• Each of these is applicable under different
circumstances.

• Benchmark suites have been designed to provide
objective performance assessment. The most well
respected of these are the SPEC and TPC
benchmarks.

Conclusion (2 of 3)

• CPU performance depends upon many factors.

• These include pipelining, parallel execution units,
integrated floating-point units, and effective
branch prediction.

• User code optimization affords the greatest
opportunity for performance improvement.

• Code optimization methods include loop
manipulation and good algorithm design.

Conclusion (3 of 3)

• Most systems are heavily dependent upon I/O
subsystems.

• Disk performance can be improved through good
scheduling algorithms, appropriate file
placement, and caching.

• Caching provides speed, but involves some risk.

• Keeping disks defragmented reduces arm motion
and results in faster service time.

