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Quick review of last lecture 

• CPU Performance Optimization 
– Branch optimization 

• Delayed branching
• Branch prediction 

– Fixed predictions
– Dynamic prediction 
– Static prediction 

– User code optimization
• Operation counting 
• Loop optimization

– Loop unrolling 
– Loop fusion 
– Loop fission 
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1. Understanding the problem

• Optimal disk performance is critical to system 
throughput.

• Disk drives are the slowest memory component, with 
the fastest access times one million times longer than 
main memory access times.

• A slow disk system can choke transaction processing 
and drag down the performance of all programs when 
virtual memory paging is involved.

• Low CPU utilization can actually indicate a problem in 
the I/O subsystem, because the CPU spends more time 
waiting than running.
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• Disk utilization is the measure of the percentage of the 
time that the disk is busy servicing I/O requests. 

• It gives the probability that the disk will be busy when 
another I/O request arrives in the disk service queue.  

• Disk utilization is determined by the speed of the disk 
and the rate at which requests arrive in the service 
queue. Stated mathematically:
– Utilization = Request Arrival Rate  Disk Service Rate.

• where the arrival rate is given in requests per second, 
and the disk service rate is given in I/O operations per 
second (IOPS)
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• The amount of time that a request spends in the 
queue is directly related to the service time and the 
probability that the disk is busy, and it is indirectly 
related to the probability that the disk is idle.  

• In formula form, we have:
Time in Queue = (Service time  Utilization) 

(1 – Utilization)

• The important relationship between queue time 
and utilization (from the formula above) is shown 
graphically on the next slide. 
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• The “knee” of the 
curve is around 78%.  
This is why 80% is the 
rule-of-thumb upper 
limit for utilization for 
most disk drives.

• Beyond that, queue 
time quickly becomes 
excessive.
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2. Physical Considerations

• The manner in which files are organized on a disk 
greatly affects throughput.

• Disk arm motion is the greatest consumer of service 
time. 

• Disk specifications cite average seek time, which is 
usually in the range of 5 to 10ms.

• However, a full-stroke seek can take as long as 15 
to 20ms.

• Clever disk scheduling algorithms endeavor to 
minimize seek time.
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3. Logical Consideration

• The most naïve disk scheduling policy is first-come, 
first-served (FCFS).  

• As its name implies, FCFS services all I/O requests in 
the order in which they arrive in the queue.

• With this approach, there is no real control over 
arm motion, so random, wide sweeps across the 
disk are possible.

• The next slide illustrates the arm motion of FCFS. 
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• Using FCFS, 
performance is 
unpredictable and 
widely variable.

• Initially, at track 40
• Requests to read 

tracks
– 28, 35, 52, 6, 46, 62, 

19, 75, 21
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• Arm motion is reduced when requests are ordered 
so that the disk arm moves only to the track 
nearest its current location.  

• This is the idea employed by the shortest seek time 
first (SSTF) scheduling algorithm. 

• Disk track requests are queued and selected so that 
the minimum arm motion is involved in servicing 
the request.

• The next slide illustrates the arm motion of SSTF. 
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• Shortest Seek Time 
First (SSTF)

• Disk schedule using
SSTF
– Initially, at track 40

– 35, 28, 21, 19, 6, 46, 
52, 62, 75
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• With SSTF, starvation is possible:  A track request 
for a “remote” track could keep getting shoved to 
the back of the queue, and nearer requests are 
serviced.  
– Interestingly, this problem is at its worst with low disk 

utilization rates.

• To avoid starvation, fairness can be enforced  by 
having the disk arm continually sweep over the 
surface of the disk, stopping when it reaches a track 
for which it has a request.  
– This approach is called an elevator algorithm.



11.6 Disk Performance (11 of 23)

• In the context of disk scheduling, the elevator 
algorithm is known as SCAN (which is not an 
acronym). 

• While SCAN entails a lot of arm motion, the motion 
is constant and predictable.

• Moreover, the arm changes direction only twice: At 
the center and at the outermost edges of the disk.

• The next slide illustrates the arm motion of SCAN. 



11.6 Disk Performance (12 of 23)

• SCAN Disk Scheduling

• Disk schedule using 
SCAN
– Initially, at track 40

– 46, 52, 62, 75, 35, 
28, 21, 19, 6 
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• A SCAN variant, called C-SCAN for circular SCAN, 
treats track zero as if it is adjacent to the highest-
numbered track on the disk. 

• The arm moves in one direction only, providing a 
simpler SCAN implementation.

• The following slide illustrates a series of read 
requests where after track 75 is read, the arm 
passes to track 99, and then to track 0 from which it 
starts reading the lowest numbered tracks starting 
with track 6.
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• C-SCAN Disk Scheduling

• Disk schedule using C-
SCAN
– Initially, at track 40

– 46, 52, 62, 75, 6, 19, 
21, 28, 35 
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• The disk arm motion of SCAN and C-SCAN can be 
reduced through the use of the LOOK and C-LOOK
algorithms.

• Instead of sweeping the entire disk, the disk arm 
travels only to the highest- and lowest-numbered 
tracks for which access requests are pending.

• Although the circuitry is more complex, LOOK and 
C-LOOK provide the best theoretical throughput, 
although the circuitry is the most complex.
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• At high utilization rates, SSTF performs slightly better 
than SCAN or LOOK. But the risk of starvation persists.  

• Under very low utilization (under 20%), the 
performance of any of these algorithms will be 
acceptable.

• No matter which scheduling algorithm is used, file 
placement greatly influences performance.

• When possible, the most frequently-used files should 
reside in the center tracks of the disk, and the disk 
should be periodically defragmented.
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• The best way to reduce disk arm motion is to avoid 
using the disk as much as possible.  

• To this end, many disk drives, or disk drive 
controllers, are provided with cache memory or a 
number of main memory pages set aside for the 
exclusive use of the I/O subsystem.  

• Disk cache memory is usually associative.  
– Because associative cache searches are time-

consuming, performance can actually be better with 
smaller disk caches because hit rates are usually low.
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• Many disk drive-based caches use prefetching
techniques to reduce disk accesses.  

• When using prefetching, a disk will read a number 
of sectors subsequent to the one requested with 
the expectation that one or more of the subsequent 
sectors will be needed “soon.”

• Empirical studies have shown that over 50% of disk 
accesses are sequential in nature, and that 
prefetching increases performance by 40%, on 
average.
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• Prefetching is subject to cache pollution, which 
occurs when the cache is filled with data that no 
process needs, leaving less room for useful data.

• Various replacement algorithms, LRU, FIFO and 
random, are employed to help keep the cache 
clean.  

• Additionally, because disk caches serve as a staging 
area for data to be written to the disk, some disk 
cache management schemes evict all bytes after 
they have been written to the disk.
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• With cached disk writes, we are faced with the 
problem that cache is volatile memory.  

• In the event of a massive system failure, data in the 
cache will be lost.  

• An application believes that the data has been 
committed to the disk, when it really is in the 
cache. If the cache fails, the data just disappears.

• To defend against power loss to the cache, some 
disk controller-based caches are mirrored and 
supplied with a battery backup.



11.6 Disk Performance (21 of 23)

• Another approach to combating cache failure is to 
employ a write-through cache where a copy of the 
data is retained in the cache in case it is needed 
again “soon,” but it is simultaneously written to the 
disk. 

• The operating system is signaled that the I/O is 
complete only after the data has actually been 
placed on the disk.

• With a write-through cache, performance is 
somewhat compromised to provide reliability.
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• When throughput is more important than 
reliability, a system may employ the write back 
cache policy.  

• Some disk drives employ opportunistic writes.

• With this approach, dirty blocks wait in the cache 
until the arrival of a read request for the same 
cylinder. 

• The write operation is then “piggybacked” onto 
the read operation.
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• Opportunistic writes have the effect of reducing 
performance on reads, but of improving it for 
writes.  

• The tradeoffs involved in optimizing disk 
performance can present difficult choices.  

• Our first responsibility is to assure data reliability 
and consistency.  

• No matter what its price, upgrading a disk 
subsystem is always cheaper than replacing lost 
data.



Conclusion (1 of 3)

• Computer performance assessment relies upon 
measures of central tendency that include the 
arithmetic mean, weighted arithmetic mean, the 
geometric mean, and the harmonic mean.

• Each of these is applicable under different 
circumstances.

• Benchmark suites have been designed to provide 
objective performance assessment. The most well 
respected of these are the SPEC and TPC 
benchmarks.
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• CPU performance depends upon many factors. 

• These include pipelining, parallel execution units, 
integrated floating-point units, and effective 
branch prediction.

• User code optimization affords the greatest 
opportunity for performance improvement. 

• Code optimization methods include loop 
manipulation and good algorithm design.



Conclusion (3 of 3)

• Most systems are heavily dependent upon I/O 
subsystems. 

• Disk performance can be improved through good 
scheduling algorithms, appropriate file 
placement, and caching.

• Caching provides speed, but involves some risk.

• Keeping disks defragmented reduces arm motion 
and results in faster service time.


