
Chapter 11

Performance
Measurement and

Analysis (D)

This is the

fourth lecture

of Chapter 11

Quick review of last lecture

• Benchmarking
– Clock rate, MIPS, and FLOPS
– Synthetic Benchmarks: Whetstone, Linpack, and

Dhrystone
– Standard Performance Evaluation Corporation (SPEC)

benchmarks
– Transaction Performance Council (TPC) benchmarks
– System simulation

11.5 CPU Performance Optimization
(1 of 15)

• CPU optimization includes many of the topics that
have been covered in preceding chapters.
– CPU optimization includes topics such as pipelining,

parallel execution units, and integrated floating-point
units.

• We have not yet explored two important CPU
optimization topics: Branch optimization and user
code optimization.

• Both of these can affect performance in dramatic
ways.

11.5 CPU Performance Optimization
(2 of 15): Branch Optimization

• We know that pipelines offer significant execution
speedup when the pipeline is kept full.

• Conditional branch instructions are a type of pipeline
hazard that can result in flushing the pipeline.
– Other hazards are include conflicts, data dependencies, and

memory access delays.

• Delayed branching offers one way of dealing with
branch hazards.

• With delayed branching, one or more instructions
following a conditional branch are sent down the
pipeline regardless of the outcome of the statement.

11.5 CPU Performance Optimization
(3 of 15)

• The responsibility for setting up delayed branching most
often rests with the compiler.

• It can choose the instruction to place in the delay slot in a
number of ways.

• The first choice is a useful instruction that executes
regardless of whether the branch occurs.

• Other possibilities include instructions that execute if the
branch occurs, but do no harm if the branch does not
occur.

• Delayed branching has the advantage of low hardware
cost.

11.5 CPU Performance Optimization
(4 of 15)

• Branch prediction is another approach to
minimizing branch penalties.

• Branch prediction tries to avoid pipeline stalls by
guessing the next instruction in the instruction
stream.
– This is called speculative execution.

• Branch prediction techniques vary according to the
type of branching. If/then/else, loop control, and
subroutine branching all have different execution
profiles.

11.5 CPU Performance Optimization
(5 of 15)

• There are various ways in which a
prediction can be made:
– Fixed predictions do not change over time.

– True predictions result in the branch being
always taken or never taken.

– Dynamic prediction uses historical information
about the branch and its outcomes.

– Static prediction does not use any history.

11.5 CPU Performance Optimization
(6 of 15)

• When fixed prediction assumes that a branch is not
taken, the normal sequential path of the program is
taken.

• However, processing is done in parallel in case the
branch occurs.

• If the prediction is correct, the preprocessing
information is deleted.

• If the prediction is incorrect, the speculative
processing is deleted and the preprocessing
information is used to continue on the correct path.

11.5 CPU Performance Optimization
(7 of 15)

• When fixed prediction assumes that a branch is
always taken, state information is saved before
the speculative processing begins.

• If the prediction is correct, the saved information
is deleted.

• If the prediction is incorrect, the speculative
processing is deleted and the saved information is
restored allowing execution to continue on the
correct path.

11.5 CPU Performance Optimization
(8 of 15)

• Dynamic prediction employs a high-speed branch
prediction buffer to combine an instruction with its
history.

• The buffer is indexed by the lower portion of the
address of the branch instruction that also contains
extra bits indicating whether the branch was recently
taken.
– One-bit dynamic prediction uses a single bit to indicate

whether the last occurrence of the branch was taken.

– Two-bit branch prediction retains the history of the
previous to occurrences of the branch along with a
probability of the branch being taken.

11.5 CPU Performance Optimization
(9 of 15)

• The earliest branch prediction implementations
used static branch prediction.

• Most newer processors (including the Pentium,
PowerPC, UltraSparc, and Motorola 68060) use
two-bit dynamic branch prediction.

• Some superscalar architectures include branch
prediction as a user option.

• Many systems implement branch prediction in
specialized circuits for maximum throughput.

11.5 CPU Performance Optimization
(10 of 15): Use of Good Algorithms

• The best hardware and compilers will never equal
the abilities of a human being who has mastered
the science of effective algorithm and coding
design.

• People can see an algorithm in the context of the
machine it will run on.
– For example a good programmer will access a stored

column-major array in column-major order.

• We end this section by offering some tips to help
you achieve optimal program performance.

11.5 CPU Performance Optimization
(11 of 15)

• Operation counting can enhance program
performance.

• With this method, you count the number of
instruction types executed in a loop then determine
the number of machine cycles for each instruction.

• The idea is to provide the best mix of instruction
types for a particular architecture.

• Nested loops provide a number of interesting
optimization opportunities.

11.5 CPU Performance Optimization
(12 of 15)

• Loop unrolling is the process of expanding a loop so
that each new iteration contains several of the original
operations, thus performing more computations per
loop iteration.

• For example:

• becomes
for (i = 1; i <= 30; i+=3)

{ a[i] = a[i] + b[i] * c;

a[i+1] = a[i+1] + b[i+1] * c;

a[i+2] = a[i+2] + b[i+2] * c; }

for (i = 1; i <= 30; i++)

a[i] = a[i] + b[i] * c;

11.5 CPU Performance Optimization
(13 of 15)

• Loop fusion combines loops that use the same data
elements, possibly improving cache performance. For
example:

• becomes

for (i = 0; i < N; i++)

C[i] = A[i] + B[i];

for (i = 0; i < N; i++)

D[i] = E[i] + C[i];

for (i = 0; i < N; i++)

{ C[i] = A[i] + B[i];

D[i] = E[i] + C[i]; }

11.5 CPU Performance Optimization
(14 of 15)

• Loop fission splits large
loops into smaller ones
to reduce data
dependencies and
resource conflicts.

• A loop fission technique
known as loop peeling
removes the beginning
and ending loop
statements.

A[1] = 0;

for (i = 2; i < N; i++)

A[i] = A[i] + 8;

A[N] = N;

for (i = 1; i < N+1; i++)

{ if (i==1)

A[i] = 0;

else if (i == N)

A[i] = N;

else A[i] = A[i] + 8; }

For example:

Becomes:

11.5 CPU Performance Optimization
(15 of 15)

• The text lists a number of rules of thumb for
getting the most out of program performance.

• Optimization efforts pay the biggest dividends
when they are applied to code segments that
are executed the most frequently.

• In short, try to make the common cases fast.

11.6 Disk Performance (1 of 23)
1. Understanding the problem

• Optimal disk performance is critical to system
throughput.

• Disk drives are the slowest memory component, with
the fastest access times one million times longer than
main memory access times.

• A slow disk system can choke transaction processing
and drag down the performance of all programs when
virtual memory paging is involved.

• Low CPU utilization can actually indicate a problem in
the I/O subsystem, because the CPU spends more time
waiting than running.

