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Quick review of last lecture 

• Benchmarking
– Clock rate, MIPS, and FLOPS
– Synthetic Benchmarks: Whetstone, Linpack, and 

Dhrystone
– Standard Performance Evaluation Corporation (SPEC) 

benchmarks
– Transaction Performance Council (TPC) benchmarks
– System simulation
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• CPU optimization includes many of the topics that 
have been covered in preceding chapters.
– CPU optimization includes topics such as pipelining, 

parallel execution units, and integrated floating-point 
units.

• We have not yet explored two important CPU 
optimization topics: Branch optimization and user 
code optimization.

• Both of these can affect performance in dramatic 
ways.
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• We know that pipelines offer significant execution 
speedup when the pipeline is kept full.

• Conditional branch instructions are a type of pipeline 
hazard that can result in flushing the pipeline.
– Other hazards are include conflicts, data dependencies, and 

memory access delays.

• Delayed branching offers one way of dealing with 
branch hazards.

• With delayed branching, one or more instructions 
following a conditional branch are sent down the 
pipeline regardless of the outcome of the statement.



11.5 CPU Performance Optimization 
(3 of 15)

• The responsibility for setting up delayed branching most 
often rests with the compiler.

• It can choose the instruction to place in the delay slot in a 
number of ways.

• The first choice is a useful instruction that executes 
regardless of whether the branch occurs.

• Other possibilities include instructions that execute if the 
branch occurs, but do no harm if the branch does not 
occur.

• Delayed branching has the advantage of low hardware 
cost.



11.5 CPU Performance Optimization 
(4 of 15)

• Branch prediction is another approach to 
minimizing branch penalties.

• Branch prediction tries to avoid pipeline stalls by 
guessing the next instruction in the instruction 
stream.
– This is called speculative execution.

• Branch prediction techniques vary according to the 
type of branching. If/then/else, loop control, and 
subroutine branching all have different execution 
profiles.
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• There are various ways in which a 
prediction can be made:
– Fixed predictions do not change over time. 

– True predictions result in the branch being 
always taken or never taken.

– Dynamic prediction uses historical information 
about the branch and its outcomes.

– Static prediction does not use any history.
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• When fixed prediction assumes that a branch is not 
taken, the normal sequential path of the program is 
taken.

• However, processing is done in parallel in case the 
branch occurs.

• If the prediction is correct, the preprocessing 
information is deleted.

• If the prediction is incorrect, the speculative 
processing is deleted and the preprocessing 
information is used to continue on the correct path.
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• When fixed prediction assumes that a branch is 
always taken, state information is saved before 
the speculative processing begins.

• If the prediction is correct, the saved information 
is deleted.

• If the prediction is incorrect, the speculative 
processing is deleted and the saved information is 
restored allowing execution to continue on the 
correct path.
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• Dynamic prediction employs a high-speed branch 
prediction buffer to combine an instruction with its 
history.

• The buffer is indexed by the lower portion of the 
address of the branch instruction that also contains 
extra bits indicating whether the branch was recently 
taken.
– One-bit dynamic prediction uses a single bit to indicate 

whether the last occurrence of the branch was taken.

– Two-bit branch prediction retains the history of the 
previous to occurrences of the branch along with a 
probability of the branch being taken.
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• The earliest branch prediction implementations 
used static branch prediction.

• Most newer processors (including the Pentium, 
PowerPC, UltraSparc, and Motorola 68060) use 
two-bit dynamic branch prediction.

• Some superscalar architectures include branch 
prediction as a user option.

• Many systems implement branch prediction in 
specialized circuits for maximum throughput.
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• The best hardware and compilers will never equal 
the abilities of a human being who has mastered 
the science of effective algorithm and coding 
design.

• People can see an algorithm in the context of the 
machine it will run on.
– For example a good programmer will access a stored 

column-major array in column-major order.

• We end this section by offering some tips to help 
you achieve optimal program performance.
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• Operation counting can enhance program 
performance.

• With this method, you count the number of 
instruction types executed in a loop then determine 
the number of machine cycles for each instruction.

• The idea is to provide the best mix of instruction 
types for a particular architecture.

• Nested loops provide a number of interesting 
optimization opportunities.
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• Loop unrolling is the process of expanding a loop so 
that each new iteration contains several of the original 
operations, thus performing more computations per 
loop iteration.  

• For example:

• becomes
for (i = 1; i <= 30; i+=3)

{ a[i] = a[i] + b[i] * c; 

a[i+1] = a[i+1] + b[i+1] * c;

a[i+2] = a[i+2] + b[i+2] * c; }

for (i = 1; i <= 30; i++)

a[i] = a[i] + b[i] * c;
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• Loop fusion combines loops that use the same data 
elements, possibly improving cache performance. For 
example:

• becomes

for (i = 0; i < N; i++)

C[i] = A[i] + B[i];

for (i = 0; i < N; i++)

D[i] = E[i] + C[i];

for (i = 0; i < N; i++)

{ C[i] = A[i] + B[i];

D[i] = E[i] + C[i]; }
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• Loop fission splits large 
loops into smaller ones 
to reduce data 
dependencies and 
resource conflicts.

• A loop fission technique 
known as loop peeling 
removes the beginning 
and ending loop 
statements. 

A[1] = 0;

for (i = 2; i < N; i++)

A[i] = A[i] + 8;

A[N] = N;

for (i = 1; i < N+1; i++)

{ if (i==1)

A[i] = 0;

else if (i == N)

A[i] = N;

else A[i] = A[i] + 8; }

For example:

Becomes:
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• The text lists a number of rules of thumb for 
getting the most out of program performance.

• Optimization efforts pay the biggest dividends 
when they are applied to code segments that 
are executed the most frequently.

• In short, try to make the common cases fast.
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1. Understanding the problem

• Optimal disk performance is critical to system 
throughput.

• Disk drives are the slowest memory component, with 
the fastest access times one million times longer than 
main memory access times.

• A slow disk system can choke transaction processing 
and drag down the performance of all programs when 
virtual memory paging is involved.

• Low CPU utilization can actually indicate a problem in 
the I/O subsystem, because the CPU spends more time 
waiting than running.


