
Chapter 10
Topics in Embedded

Systems (B)

This is the

second lecture

of Chapter 10

Quick review of last lecture

• Introduction to embedded systems

• An Overview of Embedded Hardware
– Off-the-shelf Hardware

• Microprocessors

• Systems-on-a-chip (SOCs)

– Configurable Hardware
• PAL, PLA, FPGA

– Custom-Designed Hardware

10.2 An Overview Embedded Hardware
(12 of 22)

• When:
– Off-the-shelf microcontrollers and SOCs do not have

sufficient functionality for the task at hand...

– Or off-the-shelf microcontrollers and SOCs have too much
functionality, with the excess consuming resources
needlessly…

– And a semi-custom chip cannot be economically fabricated
from commercially available IP designs...

– And PLDs are too expensive or too slow…

• The only option left is to design an application-specific
integrated circuit (ASIC) from scratch.

10.2.3 Custom-Designed Hardware

10.2 An Overview Embedded Hardware
(13 of 22)

• To design a chip from scratch we need to think
about it from three points of view:

– Behaviors: What do we need the chip to do?

– Structures: Which logic components can provide the
behavior we need?

– Physics: What is the best way to position the
components on the silicon die in order to reduce cost
and provide the best performance?

10.2 An Overview Embedded Hardware
(14 of 22)

• Gajski’s Logic Synthesis Y-Chart depicts the
relationship of these three dimensions of circuit
design.

10.2 An Overview Embedded Hardware
(15 of 22)

• Creating circuit designs along all three dimensions
is an enormously complex task that is nearly
impossible to do—with any amount of accuracy
or effectiveness—without a good toolset.

• Hardware definition languages (HDLs) were
invented in the latter part of the twentieth
century. HDLs help designers manage circuit
complexity by expressing circuit logic in a
structural view or by its behaviors.

10.2 An Overview Embedded Hardware
(16 of 22)

• Two of the most popular HDLs are Verilog and
VHDL.

• Verilog is a C-like language invented in 1983. It is
now IEEE 1364-2001.

• VHDL is an ADA-like HDL released in 1985. It is now
IEEE 1097-2002.

• The output from the compilation of both of these
languages is a netlist, which is suitable for use as
input to electronic design automation machines
that produce integrated circuit masks.

10.2 An Overview Embedded Hardware
(17 of 22)

• Traditional HDLs manipulate circuit definitions in
terms of RTL and discrete signal patterns.

• Using these languages, engineers are strained to
keep up with the complexity of today’s SOCs.

• To make design activities more accurate and cost
efficient, the level of abstraction must be raised
above the RTL level.

• SystemC and SpecC are two recent HDLs that
were invented to help solve this problem.

10.2 An Overview Embedded Hardware
(18 of 22)

• SystemC is an extension of C++ that includes classes and
libraries specifically created for embedded systems
design, to include modeling events, timing
specifications, and concurrency.

• SpecC is a C-like language, created from the outset as a
system design language.

• A SpecC development package includes a methodology
that guides engineers through four phases of system
development:
– Specification, architecture, communication channels, and

implementation.

10.2 An Overview Embedded Hardware
(19 of 22)

• Embedded systems have been traditionally developed
by specialized teams that collaboratively:
– Produce a detailed specification derived from a functional

description.

– Select a suitable processor or decide to build one.

– Determine the hardware-software partition.

– Design the circuit and write the program(s) that will run on
the system.

– Prototype and test the system.

• This system design cycle is shown on the next slide.

10.2 An Overview Embedded Hardware
(20 of 22)

Notice the back arrows. These steps are costly.

10.2 An Overview Embedded Hardware
(21 of 22)

• SystemC and SpecC facilitate changes to the traditional
design lifecycle.
– Hardware developers and software developers can speak

the same language.

– Codevelopment teams work side-by-side simultaneously
creating hardware designs and writing programs.

– Codevelopment shortens the development lifecycle and
improves product quality.

• The embedded system codesign lifecycle is shown on
the next slide.

10.2 An Overview Embedded Hardware
(22 of 22)

Rework takes place on a virtual system.

10.3 An Overview of Embedded Software
(1 of 11)

• Software development for embedded systems
presents a distinct set of challenges.

• Some of these challenges are related to the
uniqueness of the hardware, such as its
particular memory organization.
– Memory limitations are almost always a software

development constraint.

– Virtual memory is not suitable for most embedded
applications.

10.3 An Overview Embedded Software
(2 of 11)

• Embedded system memory can consist of several
different kinds, including RAM, ROM, and flash, all
sharing the same address space.

– Memory space is not always continuous

10.3 An Overview Embedded Software
(3 of 11)

• In many embedded systems, the programmer
determines the placement of program code
– Whether or not in RAM, ROM, or Flash memory

• An embedded system may or may not have a heap
– Some programmers avoid dynamic memory allocation

– Memory cleanup incurs overhead that can cause
unpredictable access delay

– More importantly, memory leaks in embedded
systems are especially problematic.

10.3 An Overview Embedded Software
(4 of 11)

• Embedded operating systems differ from general-
purpose operating systems in a number of ways.
– Responsiveness is one of the major distinguishing

features.

• Not all embedded operating systems are real-time
operating systems.
– Timing requirements may differ little from a desktop

computer.
– Hard real-time systems have strict timing constraints.
– In soft real-time systems, timing is important but not

critical.

10.3 An Overview Embedded Software
(5 of 11)

• Interrupt latency is the elapsed time between the
occurrence of an interrupt and the execution of the
first instruction of the interrupt service routine
(ISR).
– Interrupt latency is indirectly related to system

responsiveness. The smaller the latency, the faster the
response.

• Interrupts can happen at any time and in any order.
• The ISR for one interrupt possibly may not be

completed before another interrupt occurs.
– High-quality systems support such interrupt nesting.

10.3 An Overview Embedded Software
(6 of 11)

• Memory footprint is a critical concern with
embedded operating systems.
– If an operating system takes up too much memory,

additional memory may be required.

– Memory consumes power.

– Thus, the smaller the operating system, the better.

• Most embedded operating systems are
modular, allowing only the most necessary
features to be installed.

10.3 An Overview Embedded Software
(7 of 11)

• IEEE 1003.1-2001, POSIX, is the specification for
standardized Unix, to which Embedded Linux adheres.

• Other popular embedded operating systems include
Windows 10 IoT, QNX, and MS-DOS.

– Windows has several versions, each intended for a
particular application area.

• There are hundreds of others, each having its distinctive
behavior and target hardware.

– Licensing costs for the operating system are as great a
concern as hardware costs.

10.3 An Overview Embedded Software
(8 of 11)

• General-purpose software development is usually
iterative and incremental.
– Code a little, test a little.

• Embedded systems development requires a much
more rigorous and linear path.

• Functional requirements must be clear, complete,
and accurate when work begins.

• Formal languages, such as Z, are helpful in
providing accuracy and correctness.

10.3 An Overview Embedded Software
(9 of 11)

• Large software projects are usually partitioned into
chunks so that the chunks can be assigned to different
teams.

• Embedded software doesn’t partition so easily, making
team assignments difficult.

• To improve performance, some embedded
programmers advocate the use of global variables and
unstructured code.

• Others rail against this idea, saying that it is not good
engineering practice regardless of the platform for
which the software is written.

10.3 An Overview Embedded Software
(10 of 11)

• Event handling is a major challenge to the
embedded programmer.
– It lies at the heart of embedded systems

functionality.

• Events can happen asynchronously and in any
order.

• It is virtually impossible to test all possible
sequences of events.

• Testing must be rigorous and thorough.

10.3 An Overview Embedded Software
(11 of 11)

• Embedded programming is essentially a matter of
raising and responding to signals.

• Hardware support may be designed into a chip to
facilitate the tracing and debugging of signal patterns.

– Examples are ICE, Motorola’s BDM, IEEE 1149.1 JTAG,
and IEEE 5001 Nexus.

• Some platforms offer no tool support in the way of
debuggers or even compilers.

– Writing software for these systems is called bare metal
programming.

Conclusion (1 of 5)

• Embedded systems differ from general-purpose
systems because:

– They are resource constrained.

– Programming requires deep awareness of the
underlying hardware.

– Signal timing and event handling are critical.

– The hardware-software partition is moveable.

• Embedded hardware can be off-the-shelf, semi-
customized, fully-customized, or configurable.

Conclusion (2 of 5)

• Programmable logic devices include:

– PALs: Programmable AND gates connected to a set
of fixed OR gates.

– PLA: Programmable AND gates connected through
programmable OR gates.

– FPGA: Logic functions provided through lookup
tables.

• PLDs tend to be slow and expensive as compared
to off-the-shelf ICs.

Conclusion (3 of 5)

• Hardware definition languages Verilog, VHDL
specify the functions and layout of full-custom
chips.

• SpecC and SystemC raise the level of abstraction
in chip design.

• Hardware-software codesign and cosimulation
reduces errors and brings products to market
faster.

Conclusion (4 of 5)

• Embedded operating systems differ from general
purpose operating systems in their timing and
memory footprint requirements.

• IEEE 1003.1-2001, POSIX, is the specification for
standardized Unix, to which Embedded Linux
adheres.

• Other popular embedded operating systems

include Windows 10 IoT, QNX, and MS-DOS.

Conclusion (5 of 5)

• Embedded software requires accurate
specifications and rigorous development
practices.
– Formal languages help.

• Event processing requires careful specification
and testing.

• Embedded system debugging can be supported
by hardware interfaces to include ICE, BDM,
JTAG, and Nexus.

Homework #12

• Chapter 10:

– Exercises: 3, 4, 6, 7, 10

