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Quick review of last lecture 

• Introduction to embedded systems

• An Overview of Embedded Hardware
– Off-the-shelf Hardware 

• Microprocessors

• Systems-on-a-chip (SOCs)

– Configurable Hardware
• PAL, PLA, FPGA

– Custom-Designed Hardware
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• When:
– Off-the-shelf microcontrollers and SOCs do not have 

sufficient functionality for the task at hand... 

– Or off-the-shelf microcontrollers and SOCs have too much 
functionality, with the excess consuming resources 
needlessly…

– And a semi-custom chip cannot be economically fabricated 
from commercially available IP designs...

– And PLDs are too expensive or too slow…

• The only option left is to design an application-specific 
integrated circuit (ASIC) from scratch.

10.2.3 Custom-Designed Hardware
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• To design a chip from scratch we need to think 
about it from three points of view:

– Behaviors: What do we need the chip to do?

– Structures: Which logic components can provide the 
behavior we need?

– Physics: What is the best way to position the 
components on the silicon die in order to reduce cost 
and provide the best performance?
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• Gajski’s Logic Synthesis Y-Chart depicts the 
relationship of these three dimensions of circuit 
design.
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• Creating circuit designs along all three dimensions 
is an enormously complex task that is nearly 
impossible to do—with any amount of accuracy 
or effectiveness—without a good toolset.

• Hardware definition languages (HDLs) were 
invented in the latter part of the twentieth 
century. HDLs help designers manage circuit 
complexity by expressing circuit logic in a 
structural view or by its behaviors.
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• Two of the most popular HDLs are Verilog and 
VHDL.

• Verilog is a C-like language invented in 1983. It is 
now IEEE 1364-2001.

• VHDL is an ADA-like HDL released in 1985. It is now 
IEEE 1097-2002.

• The output from the compilation of both of these 
languages is a netlist, which is suitable for use as 
input to electronic design automation machines 
that produce integrated circuit masks.
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• Traditional HDLs manipulate circuit definitions in 
terms of RTL and discrete signal patterns.

• Using these languages, engineers are strained to 
keep up with the complexity of today’s SOCs.

• To make design activities more accurate and  cost 
efficient, the level of abstraction must be raised 
above the RTL level.

• SystemC and SpecC are two recent HDLs that 
were invented to help solve this problem. 
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• SystemC is an extension of C++ that includes classes and 
libraries specifically created for embedded systems 
design, to include modeling events, timing 
specifications, and concurrency.

• SpecC is a C-like language, created from the outset as a 
system design language. 

• A SpecC development package includes a methodology 
that guides engineers through four phases of system 
development:
– Specification, architecture, communication channels, and 

implementation.
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• Embedded systems have been traditionally developed 
by specialized teams that collaboratively:
– Produce a detailed specification derived from a functional 

description.

– Select a suitable processor or decide to build one.

– Determine the hardware-software partition.

– Design the circuit and write the program(s) that will run on 
the system.

– Prototype and test the system.

• This system design cycle is shown on the next slide.
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Notice the back arrows. These steps are costly.



10.2 An Overview Embedded Hardware 
(21 of 22)

• SystemC and SpecC facilitate changes to the traditional 
design lifecycle.
– Hardware developers and software developers can speak 

the same language.

– Codevelopment teams work side-by-side simultaneously 
creating hardware designs and writing programs.

– Codevelopment shortens the development lifecycle and 
improves product quality.

• The embedded system codesign lifecycle is shown on 
the next slide.
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Rework takes place on a virtual system.
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• Software development for embedded systems 
presents a distinct set of challenges.

• Some of these challenges are related to the 
uniqueness of the hardware, such as its 
particular memory organization.
– Memory limitations are almost always a software 

development constraint.

– Virtual memory is not suitable for most embedded 
applications.
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• Embedded system memory can consist of several 
different kinds, including RAM, ROM, and flash, all 
sharing the same address space.

– Memory space is not always continuous
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• In many embedded systems, the programmer 
determines the placement of program code
– Whether or not in RAM, ROM, or Flash memory

• An embedded system may or may not have a heap
– Some programmers avoid dynamic memory allocation

– Memory cleanup incurs overhead that can cause 
unpredictable access delay

– More importantly, memory leaks in embedded 
systems are especially problematic.
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• Embedded operating systems differ from general-
purpose operating systems in a number of ways.
– Responsiveness is one of the major distinguishing 

features.

• Not all embedded operating systems are real-time 
operating systems. 
– Timing requirements may differ little from a desktop 

computer.
– Hard real-time systems have strict timing constraints.
– In soft real-time systems, timing is important but not 

critical.
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• Interrupt latency is the elapsed time between the 
occurrence of an interrupt and the execution of the 
first instruction of the interrupt service routine 
(ISR).
– Interrupt latency is indirectly related to system 

responsiveness. The smaller the latency, the faster the 
response.

• Interrupts can happen at any time and in any order.
• The ISR for one interrupt possibly may not be 

completed before another interrupt occurs.
– High-quality systems support such interrupt nesting.
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• Memory footprint is a critical concern with 
embedded operating systems.
– If an operating system takes up too much memory, 

additional memory may be required.

– Memory consumes power.

– Thus, the smaller the operating system, the better.

• Most embedded operating systems are 
modular, allowing only the most necessary 
features to be installed.
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• IEEE 1003.1-2001, POSIX, is the specification for 
standardized Unix, to which Embedded Linux adheres.

• Other popular embedded operating systems include 
Windows 10 IoT, QNX, and MS-DOS.

– Windows has several versions, each intended for a 
particular application area.

• There are hundreds of others, each having its distinctive 
behavior and target hardware.

– Licensing costs for the operating system are as great a 
concern as hardware costs.
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• General-purpose software development is usually 
iterative and incremental.
– Code a little, test a little.

• Embedded systems development requires a much 
more rigorous and linear path. 

• Functional requirements must be clear, complete, 
and accurate when work begins.

• Formal languages, such as Z, are helpful in 
providing accuracy and correctness.



10.3 An Overview Embedded Software 
(9 of 11)

• Large software projects are usually partitioned into 
chunks so that the chunks can be assigned to different 
teams.

• Embedded software doesn’t partition so easily, making 
team assignments difficult.

• To improve performance, some embedded 
programmers advocate the use of global variables and 
unstructured code.

• Others rail against this idea, saying that it is not good 
engineering practice regardless of the platform for 
which the software is written.
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• Event handling is a major challenge to the 
embedded programmer. 
– It lies at the heart of embedded systems 

functionality.

• Events can happen asynchronously and in any 
order. 

• It is virtually impossible to test all possible 
sequences of events. 

• Testing must be rigorous and thorough. 
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• Embedded programming is essentially a matter of 
raising and responding to signals. 

• Hardware support may be designed into a chip to 
facilitate the tracing and debugging of signal patterns.

– Examples are ICE, Motorola’s BDM, IEEE 1149.1 JTAG, 
and IEEE 5001 Nexus.

• Some platforms offer no tool support in the way of 
debuggers or even compilers.

– Writing software for these systems is called bare metal 
programming.



Conclusion (1 of 5)

• Embedded systems differ from general-purpose 
systems because:

– They are resource constrained.

– Programming requires deep awareness of the 
underlying hardware.

– Signal timing and event handling are critical.

– The hardware-software partition is moveable.

• Embedded hardware can be off-the-shelf, semi-
customized, fully-customized, or configurable.
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• Programmable logic devices include:

– PALs: Programmable AND gates connected to a set 
of fixed OR gates.

– PLA: Programmable AND gates connected through 
programmable OR gates.

– FPGA: Logic functions provided through lookup 
tables.

• PLDs tend to be slow and expensive as compared 
to off-the-shelf ICs.



Conclusion (3 of 5)

• Hardware definition languages Verilog, VHDL 
specify the functions and layout of full-custom 
chips.

• SpecC and SystemC raise the level of abstraction 
in chip design.

• Hardware-software codesign and cosimulation 
reduces errors and brings products to market 
faster.



Conclusion (4 of 5)

• Embedded operating systems differ from general 
purpose operating systems in their timing and 
memory footprint requirements.

• IEEE 1003.1-2001, POSIX, is the specification for 
standardized Unix, to which Embedded Linux 
adheres.

• Other popular embedded operating systems 

include Windows 10 IoT, QNX, and MS-DOS.



Conclusion (5 of 5)

• Embedded software requires accurate 
specifications and rigorous development 
practices.
– Formal languages help.

• Event processing requires careful specification 
and testing.

• Embedded system debugging can be supported 
by hardware interfaces to include ICE, BDM, 
JTAG, and Nexus.



Homework #12

• Chapter 10: 

– Exercises: 3, 4, 6, 7, 10


