
Chapter 9

Alternative
Architectures (A)

This is the first

lecture of

Chapter 9

Quick review of last lecture

• Programming Tools:
– Assembler,

– linker,

– Compilers, and

– Interpreters

• Java: All of the Above.

Objectives

• Learn the properties that often distinguish RISC
from CISC architectures.

• Understand how multiprocessor architectures are
classified.

• Appreciate the factors that create complexity in
multiprocessor systems.

• Become familiar with the ways in which some
architectures transcend the traditional von
Neumann paradigm.

9.1 Introduction

• We have so far studied only the simplest models
of computer systems; classical single-processor
von Neumann systems.

• This chapter presents a number of different
approaches to computer organization and
architecture.

• Some of these approaches are in place in today’s
commercial systems. Others may form the basis
for the computers of tomorrow.

9.2 RISC Machines (1 of 9)

• The underlying philosophy of RISC machines is that a
system is better able to manage program execution
when the program consists of only a few different
instructions that are the same length and require the
same number of clock cycles to decode and execute.

• RISC systems access memory only with explicit load and
store instructions.

• In CISC systems, many different kinds of instructions
access memory, making instruction length variable and
fetch-decode-execute time unpredictable.

9.2 RISC Machines (2 of 9)

• The difference between CISC and RISC becomes
evident through the basic computer performance
equation:

• RISC systems shorten execution time by reducing
the clock cycles per instruction.

• CISC systems improve performance by reducing the
number of instructions per program.

9.2 RISC Machines (3 of 9)

• The simple instruction set of RISC machines enables
control units to be hardwired for maximum speed.

• The more complex—and variable—instruction set
of CISC machines requires microcode-based control
units that interpret instructions as they are fetched
from memory. This translation takes time.

• With fixed-length instructions, RISC lends itself to
pipelining and speculative execution.

mov ax, 0

mov bx, 10

mov cx, 5

Begin add ax, bx

loop Begin

9.2 RISC Machines (4 of 9)

• Consider the program fragments:

• The total clock cycles for the CISC version might be:
– (2 movs  1 cycle) + (1 mul  30 cycles)
= 32 cycles

• While the clock cycles for the RISC version is:
– (3 movs  1 cycle) + (5 adds  1 cycle) +
(5 loops  1 cycle) = 13 cycles

• With RISC clock cycle being shorter, RISC gives us much faster
execution speeds.

mov ax, 10

mov bx, 5

mul bx, ax
CISC RISC

9.2 RISC Machines (5 of 9)

• Because of their load-store ISAs, RISC architectures
require a large number of CPU registers.

• These registers provide fast access to data during
sequential program execution.

• They can also be employed to reduce the overhead
typically caused by passing parameters to
subprograms.

• Instead of pulling parameters off of a stack, the
subprogram is directed to use a subset of registers.

9.2 RISC Machines (6 of 9)

• This is how
registers can be
overlapped in a
RISC system.

• The current
window pointer
(CWP) points to
the active register
window.

Example: Overlapping Register Windows

• A RISC processor has 16
global registers and 6
register windows. Each
window has 4 input
registers, 8 local and 4
output. How many total
registers are in this
CPU?

• (8 + 4) * 6 + 16 = 72 + 16 = 88

9.2 RISC Machines (7 of 9)

• It is becoming increasingly difficult to
distinguish RISC architectures from CISC
architectures.

• Some RISC systems provide more extravagant
instruction sets than some CISC systems.

• Some systems combine both approaches.

• The following two slides summarize the
characteristics that traditionally typify the
differences between these two architectures.

9.2 RISC Machines (8 of 9)

• CISC
– Single register set

– One or two register
operands per instruction

– Parameter passing
through memory

– Multiple cycle
instructions

– Microprogrammed
control

– Less pipelined

• RISC

– Multiple register sets

– Three operands per
instruction

– Parameter passing
through register
windows

– Single-cycle instructions

– Hardwired
control

– Highly pipelined

9.2 RISC Machines (9 of 9)

• CISC

– Many complex
instructions

– Variable length
instructions

– Complexity in microcode

– Many instructions can
access memory

– Many addressing modes

• RISC

– Simple instructions, few
in number

– Fixed length instructions

– Complexity in compiler

– Only LOAD/STORE

instructions access
memory

– Few addressing modes

9.3 Flynn’s Taxonomy (1 of 7)

• Many attempts have been made to come up with a
way to categorize computer architectures.

• Flynn’s Taxonomy has been the most enduring of
these, despite having some limitations.

• Flynn’s Taxonomy takes into consideration the
number of processors and the number of data
paths incorporated into an architecture.

• A machine can have one or many processors that
operate on one or many data streams.

9.3 Flynn’s Taxonomy (2 of 7)

• The four combinations of multiple processors and
multiple data paths are described by Flynn as:
– SISD: Single instruction stream, single data stream.

These are classic uniprocessor systems.

– SIMD: Single instruction stream, multiple data streams.
Execute the same instruction on multiple data values,
as in vector processors.

– MIMD: Multiple instruction streams, multiple data
streams. These are today’s parallel architectures.

– MISD: Multiple instruction streams, single data stream.

9.3 Flynn’s Taxonomy (3 of 7)

• Flynn’s Taxonomy falls short in a number of ways:
– First, there appears to be no need for MISD machines.

– Second, parallelism is not homogeneous. This
assumption ignores the contribution of specialized
processors.

– Third, it provides no straightforward way to distinguish
architectures of the MIMD category.

• One idea is to divide these systems into those that
share memory, and those that don’t, as well as
whether the interconnections are bus-based or
switch-based.

9.3 Flynn’s Taxonomy (4 of 7)

• Symmetric multiprocessors (SMP) and massively
parallel processors (MPP) are MIMD architectures
that differ in how they use memory.

• SMP systems share the same memory and MPP do
not.

• An easy way to distinguish SMP from MPP is:
– MPP  many processors + distributed memory +

communication via network

– SMP  fewer processors + shared memory +
communication via memory

9.3 Flynn’s Taxonomy (5 of 7)

• Other examples of MIMD architectures are found in
distributed computing, where processing takes place
collaboratively among networked computers.
– A network of workstations (NOW) uses otherwise idle

systems to solve a problem.

– A cluster of workstations (COW) is a NOW where one
workstation coordinates the actions of the others.

– A dedicated cluster parallel computer (DCPC) is a group of
workstations brought together to solve a specific problem.

– A pile of PCs (POPC) is a cluster of (usually) heterogeneous
systems that form a dedicated parallel system.

9.3 Flynn’s Taxonomy (6 of 7)

• Flynn’s Taxonomy has been expanded to include
SPMD (single program, multiple data) architectures.

• Each SPMD processor has its own data set and
program memory. Different nodes can execute
different instructions within the same program
using instructions similar to:
– If myNodeNum = 1 do this, else do that

• Yet another idea missing from Flynn’s is whether
the architecture is instruction driven or data driven.

The next slide provides a revised taxonomy.

9.3 Flynn’s Taxonomy (7 of 7)

