
Chapter 8

System Software (B)

This is the

second lecture of

Chapter 8

Quick review of last lecture

• Operating Systems

– Operating Systems History

– Operating Systems Design

– Operating System Services

• Protected Environments

– Virtual Machines

– Subsystems

– Logical Partitions

8.4 Programming Tools (1 of 13)

• Programming tools carry out the mechanics of software

creation within the confines of the operating system and

hardware environment.

• Assemblers are the simplest of all programming tools.

They translate mnemonic instructions to machine code.

• Most assemblers carry out this translation in two passes

over the source code.

– The first pass partially assembles the code and builds the

symbol table.

– The second pass completes the instructions by supplying

values stored in the symbol table.

8.4.1 Assembler and Assembly

8.4 Programming Tools (2 of 13)

• The output of most assemblers is a stream of relocatable

binary code.

– In relocatable code, operand addresses are relative to where

the operating system chooses to load the program.

– Absolute (nonrelocatable) code is most suitable for device

and operating system control programming.

• When relocatable code is loaded for execution, special

registers provide the base addressing.

• Addresses specified within the program are interpreted as

offsets from the base address.

The next slide illustrates this idea.

• Example: MARIE Code

Load X

Add Y

Store Z

Halt

X, DEC 35

Y, DEC -23

Z, HEX 0

1004

3005

2006

7000

0023

FFE9

0000

1+004

3+005

2+006

7000

0023

FFE9

0000

0

1

2

3

4

5

6

Assembly

Using

absolute

address

Assembly

Using

relative

address

offset

Address

8.4 Programming Tools (4 of 13)

• The process of assigning physical addresses to

program variables is called binding.

• Binding can occur at compile time, load time, or run

time.

• Compile time binding gives us absolute code.

• Load time binding assigns physical addresses as

the program is loaded into memory.

– With load time, binding the program cannot be moved!

• Run time binding requires a base register to carry

out the address mapping.

8.4 Programming Tools (5 of 13)

• On most systems, binary instructions must pass

through a link editor (or linker) to create an

executable module.

• Link editors incorporate various binary routines into a

single executable file as called for by a program’s

external symbols.

• Like assemblers, link editors perform two passes:

The first pass creates a symbol table and the second

resolves references to the values in the symbol table.

The next slide shows this process schematically.

8.4.2 Link Editors

8.4 Programming Tools (7 of 13)

• Dynamic linking is when the link editing is delayed until

load time or at run time.

• External modules are loaded from dynamic link libraries

(DLLs).

• Load time dynamic linking slows down program loading,

but calls to the DLLs are faster.

• Run time dynamic linking occurs when an external module

is first called, causing slower execution time.

– Dynamic linking makes program modules smaller, but

carries the risk that the programmer may not have control

over the DLL.

8.4.3 Dynamic Link Libraries

8.4 Programming Tools (8 of 13)

• Assembly language is considered a “second

generation” programming language (2GL).

• Compiled programming languages, such as C,

C++, Pascal, and COBOL, are “third

generation” languages (3GLs).

• Higher language generation presents problem

solving tools that are closer to how people think

and farther away from how the machine

implements the solution.

8.4.4 Compilers

8.4 Programming Tools (9 of 13)

Keep in mind that the computer can understand only the 1GL!

8.4 Programming Tools (10 of 13)

• Compilers bridge the semantic gap between the

higher-level language and the machine’s binary

instructions.

• Most compilers effect this translation in a six-phase

process. The first three are analysis phases:
– 1. Lexical analysis extracts tokens (e.g., reserved

words and variables).

– 2. Syntax analysis (parsing) checks statement

construction.

– 3. Semantic analysis checks data types and the validity

of operators.

8.4 Programming Tools (11 of 13)

• The last three compiler phases are synthesis phases:

– 4. Intermediate code generation creates three address code

to facilitate optimization and translation.

– 5. Optimization creates assembly code while taking into

account architectural features that can make the code

efficient.

– 6. Code generation creates binary code from the optimized

assembly code.

• Through this modularity, compilers can be written for

various platforms by rewriting only the last two phases.

The next slide shows this process graphically.

8.4 Programming Tools (13 of 13)

• Interpreters produce executable code from
source code in real time, one line at a time.

• Consequently, this not only makes interpreted
languages slower than compiled languages but
it also affords less opportunity for error
checking.

• Interpreted languages are, however, very
useful for teaching programming concepts,
because feedback is nearly instantaneous, and
performance is rarely a concern.

8.4.5 Interpreters

8.5 Java: All of the Above (1 of 5)

• The Java programming language exemplifies many of the

concepts that we have discussed in this chapter.

• Java programs (classes) execute within a virtual machine,

the Java Virtual Machine (JVM).

• This allows the language to run on any platform for which

a virtual machine environment has been written.

• Java is both a compiled and an interpreted language. The

output of the compilation process is an assembly-like

intermediate code (bytecode) that is interpreted by the

JVM.

• Because the JVM performs so many tasks at run

time, its performance cannot match the performance

of a traditional compiled language.

• The JVM is an operating system in miniature.

– It loads programs, links them, starts execution threads,

manages program resources, and deallocates

resources when the programs terminate.

8.5 Java: All of the Above (3 of 5)

• At execution time, a Java Virtual Machine must

be running on the host system.

• It loads and executes the bytecode class file.

• While loading the class file, the JVM verifies the

integrity of the bytecode.

• The loader then performs a number of run-time

checks as it places the bytecode in memory.

• The loader invokes the bytecode interpreter.

8.5 Java: All of the Above (4 of 5)

• The bytecode interpreter:
– Performs a link edit of the bytecode instructions by

asking the loader to supply all referenced classes and

system binaries, if they are not already loaded.

– Creates and initializes the main stack frame and local

variables.

– Creates and starts execution thread(s).

– Manages heap storage by deallocating unused storage

while the threads are executing.

– Deallocates resources of terminated threads.

– Upon program termination, kills any remaining threads

and terminates the JVM.

8.5 Java: All of the Above (5 of 5)

• Because the JVM does so much as it loads and executes its

bytecode, it can't match the performance of a compiled

language.

– This is true even when speedup software like Java’s Just-In-Time

(JIT) compiler is used.

• However class files can be created and stored on one platform

and executed on a completely different platform.

• This “write once, run-anywhere” paradigm is of enormous

benefit for enterprises with disparate and geographically

separate systems.

• Given its portability and relative ease of use, the Java language

and its virtual machine environment are the ideal middleware

platform.

Conclusion (1 of 2)

• The proper functioning and performance of a

computer system depends as much on its software

as its hardware.

• The operating system is the system software

component upon which all other software rests.

• Operating systems control process execution,

resource management, protection, and security.

• Subsystems and partitions provide compatibility

and ease of management.

Conclusion (2 of 2)

• Programming languages are often classed into

generations, with machine language being the first

generation.

• All languages above the machine level must be translated

into machine code.

• Compilers bridge this semantic gap through a series of six

steps.

• Link editors resolve system calls and external routines,

creating a unified executable module.

• The Java programming language incorporates the idea of

a virtual machine, a compiler and an interpreter.

