
Chapter 8

System Software (A)

This is the first

lecture of

Chapter 8

Quick review of last lecture

• Magnetic Tape

– Digital linear tape (DLT) and Serpentine recording

– Digital audio tape (DAT) and helical scan recording

– Linear Tape Open (TLO)
• a linear digital tape format

• hold up to 1.4TB (Generation 5)

• Redundant Array of Independent Disks (RAID)
– RAID Levels 0 – 6

– RAID DP

– RAID 10

– RAID 50

Objectives

• Become familiar with the functions provided

by operating systems, Protected

environments, and programming tools.

• Understand the role played by each software

component in maintaining the integrity of a

computer system and its data.

8.1 Introduction

• The biggest and fastest computer in the world

is of no use if it cannot efficiently provide

beneficial services to its users.

• Users see the computer through their

application programs. These programs are

ultimately executed by computer hardware.

• System software—in the form of operating

systems and middleware—is the glue that

holds everything together.

8.2 Operating Systems (1 of 12)

• The evolution of operating systems has paralleled the

evolution of computer hardware.
– As hardware became more powerful, operating

systems allowed people to more easily manage the

power of the machine.

• In the days when main memory was measured in

kilobytes, and tape drives were the only form of

magnetic storage, operating systems were simple

resident monitor programs.

– The resident monitor could only load, execute, and

terminate programs.

8.2.1 Operating Systems History

8.2 Operating Systems (2 of 12)

• In the 1960s, hardware has become powerful

enough to accommodate multiprogramming, the

concurrent execution of more than one task.

• Multiprogramming is achieved by allocating each

process a given portion of CPU time (a timeslice).

• Interactive multiprogramming systems were called

timesharing systems.

– When a process is taken from the CPU and replaced

by another, we say that a context switch has occurred.

8.2 Operating Systems (3 of 12)

• Today, multiprocessor systems have become

commonplace.

– They present an array of challenges to the operating

system designer, including the manner in which the

processors will be synchronized, and how to keep their

activities from interfering with each other.

• Tightly coupled multiprocessor systems share a

common memory and the same set of I/O devices.

– Symmetric multiprocessor systems are tightly coupled

and load balanced.

8.2 Operating Systems (4 of 12)

• Loosely coupled multiprocessor systems have

physically separate memory.

– These are often called distributed systems.

– Another type of distributed system is a networked

system, which consists of a collection of

interconnected, collaborating workstations.

• Real-time operating systems control computers

that respond to their environment.

– Hard real-time systems have tight timing constraints,

soft real-time systems do not.

8.2 Operating Systems (5 of 12)

• Personal computer operating systems are designed

for ease of use rather than high performance.

• The idea that revolutionized small computer

operating systems was the BIOS (basic input-output

operating system) chip that permitted a single

operating system to function on different types of

small systems.

– The BIOS takes care of the details involved in

addressing divergent peripheral device designs and

protocols.

8.2 Operating Systems (6 of 12)

• Operating systems having graphical user interfaces

were first brought to market in the 1980s.

• At one time, these systems were considered

appropriate only for desktop publishing and games.

Today they are seen as technology enablers for

users with little formal computer education.

• Once solely a server operating system, Linux holds

the promise of bringing Unix to ordinary desktop

systems.

8.2 Operating Systems (7 of 12)

• Two operating system components are crucial: The

kernel and the system programs.

• As the core of the operating system, the kernel

performs scheduling, synchronization, memory

management, interrupt handling and it provides

security and protection.

• Microkernel systems provide minimal functionality,

with most services carried out by external programs.

• Monolithic systems provide most of their services

within a single operating system program.

8.2.2 Operating Systems Design

8.2 Operating Systems (8 of 12)

• Microkernel systems provide better security, easier

maintenance, and portability at the expense of

execution speed.

– Examples are MINIX, Mach, and QNX.

– Symmetric multiprocessor computers are ideal

platforms for microkernel operating systems.

• Monolithic systems give faster execution speed,

but are difficult to port from one architecture to

another.

– Examples are Linux, MacOS, and DOS.

8.2 Operating Systems (9 of 12)

• Process management lies at the heart of operating

system services.

– The operating system creates processes, schedules

their access to resources, deletes processes, and

deallocates resources that were allocated during

process execution.

• The operating system monitors the activities of each

process to avoid synchronization problems that can

occur when processes use shared resources.

• If processes need to communicate with one another,

the operating system provides the services.

8.2.3 Operating System Services

8.2 Operating Systems (10 of 12)

• The operating system schedules process execution.

• First, the operating system determines which process shall be

granted access to the CPU.

– This is long-term scheduling.

• After a number of processes have been admitted, the operating

system determines which one will have access to the CPU at

any particular moment.

– This is short-term scheduling.

• Context switches occur when a process is taken from the CPU

and replaced by another process.

– Information relating to the state of the process is preserved during a

context switch.

8.2 Operating Systems (11 of 12)

• Short-term scheduling can be nonpreemptive or

preemptive

• In nonpreemptive scheduling, a process has use of

the CPU until either it terminates or must wait for

resources that are temporarily unavailable.

• In preemptive scheduling, each process is

allocated a time slice. When the time slice expires,

a context switch occurs.

• A context switch can also occur when a higher-

priority process needs the CPU.

8.2 Operating Systems (12 of 12)

• Four approaches to CPU scheduling are:

– First-come, first-served where jobs are serviced in arrival

sequence and run to completion if they have all of the

resources they need.

– Shortest job first where the smallest jobs get scheduled first.

(The trouble is in knowing which jobs are shortest!)

– Round robin scheduling where each job is allotted a certain

amount of CPU time. A context switch occurs when the time

expires.

– Priority scheduling preempts a job with a lower priority when

a higher-priority job needs the CPU.

8.3 Protected Environments (1 of 7)

• In their role as resource managers and protectors, many

operating systems provide protected environments that

isolate processes, or groups of processes from each

other.

• Three common approaches to establishing protected

environments are virtual machines, subsystems, and

partitions.

• These environments simplify system management and

control, and can provide emulated machines to enable

execution of programs that the system would otherwise be

unable to run.

8.3 Protected Environments (2 of 7)

• Virtual machines are a protected environment that

presents an image of itself—or the image of a totally

different architecture—to the processes that run within the

environment.

• A virtual machine is exactly that: an imaginary computer.

• The underlying real machine is under the control of the

kernel. The kernel receives and manages all resource

requests that emit from processes running in the virtual

environment.

• The next slide provides an illustration.

8.3.1 Virtual Machines

8.3 Protected Environments (4 of 7)

• Subsystems are another type of protected environment.

• They provide logically distinct environments that can be

individually controlled and managed. They can be stopped

and started independent of each other.

– Subsystems can have special purposes, such as controlling

I/O or virtual machines. Others partition large application

systems to make them more manageable.

– In many cases, resources must be made visible to the

subsystem before they can be accessed by the processes

running within it.

The next slide provides an illustration.

8.3.2 Subsystems and Partitions

8.3 Protected Environments (6 of 7)

• In very large computers, subsystems do not go far

enough to establish a protected environment.

• Logical partitions (LPARs) provide much higher

barriers: Processes running within a logical partition

have no access to processes running in another

partition unless a connection between them (e.g.,

FTP) is explicitly established.

• LPARs are an enabling technology for the recent

trend of consolidating hundreds of small servers

within the confines of a single large system.

The next slide provides an illustration.

8.4 Programming Tools (1 of 13)

• Programming tools carry out the mechanics of software

creation within the confines of the operating system and

hardware environment.

• Assemblers are the simplest of all programming tools.

They translate mnemonic instructions to machine code.

• Most assemblers carry out this translation in two passes

over the source code.

– The first pass partially assembles the code and builds the

symbol table.

– The second pass completes the instructions by supplying

values stored in the symbol table.

8.4.1 Assembler and Assembly

