This is the fifth lecture of Chapter 7 No recording **Chapter 7** Input/Output Systems (E)

THE ESSENTIALS OF Computer Organization and Architecture FIFTH EDITION

> Linda Null Julia Lobur

aniis Lobur

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

Quick review of last lecture

- Magnetic Tape
 - Digital linear tape (DLT) and Serpentine recording
 - Digital audio tape (DAT) and helical scan recording
 - Linear Tape Open (TLO)
 - a linear digital tape format
 - hold up to 1.4TB (Generation 5)
- Redundant Array of Independent Disks (RAID)
 - RAID Levels 0 6
 - RAID DP
 - RAID 10
 - RAID 50

7.10 The Future of Data Storage (1 of 11)

- Advances in technology have defied all efforts to define the ultimate upper limit for magnetic disk storage.
 - In the 1970s, the upper limit was thought to be around 2MB/in².
 - Today's disks commonly support 20TB/in².
- Improvements have occurred in several different technologies including:
 - Materials science.
 - Magneto-optical recording heads.
 - Error correcting codes.

7.10 The Future of Data Storage (2 of 11)

- As data densities increase, bit cells consist of proportionately fewer magnetic grains.
- There is a point at which there are too few grains to hold a value, and a 1 might spontaneously change to a 0, or vice versa.
- This point is called the superparamagnetic limit.
 - In 2006, the superparamagnetic limit is thought to lie between 150GB/in² and 200GB/in².
- Even if this limit is wrong by a few orders of magnitude, the greatest gains in magnetic storage have probably already been realized.

7.10 The Future of Data Storage (3 of 11)

- Future exponential gains in data storage most likely will occur through the use of totally new technologies.
- Research into finding suitable replacements for magnetic disks is taking place on several fronts.
- Some of the more interesting technologies include:
 - Biological materials
 - Holographic systems
 - Micro-electro-mechanical devices
 - Carbon nanotubes
 - Memristors

7.10 The Future of Data Storage (4 of 11)

- Present day biological data storage systems combine organic compounds such as proteins or oils with inorganic (magnetizable) substances.
- Early prototypes have encouraged the expectation that densities of 1Tb/in² are attainable.
- Of course, the ultimate biological data storage medium is DNA.
 - Trillions of messages can be stored in a tiny strand of DNA.
- Practical DNA-based data storage is most likely decades away.

7.10 The Future of Data Storage (5 of 11)

 Holographic storage uses a pair of laser beams to etch a three-dimensional hologram onto a polymer medium.

7.10 The Future of Data Storage (6 of 11)

 Data is retrieved by passing the reference beam through the hologram, thereby reproducing the original coded object beam.

7.10 The Future of Data Storage (7 of 11)

- Because holograms are three-dimensional, tremendous data densities are possible.
- Experimental systems have achieved over 30GB/in², with transfer rates of around 1GBps.
- In addition, holographic storage is content addressable.
 - This means that there is no need for a file directory on the disk. Accordingly, access time is reduced.
- The major challenge is in finding an inexpensive, stable, rewriteable holographic medium.

7.10 The Future of Data Storage (8 of 11)

- Micro-electro-mechanical storage (MEMS) devices offer another promising approach to mass storage.
- IBM's Millipede is one such device.
- Prototypes have achieved densities of 100GB/in² with 1TB/in² expected as the technology is refined.
- A photomicrograph of Millipede is shown on the next slide.

7.10 The Future of Data Storage (9 of 11)

- Millipede consists of thousands of cantilevers that record a binary 1 by pressing a heated tip into a polymer substrate.
 - The tip reads a binary 1 when it dips into the imprint in the polymer.

7.10 The Future of Data Storage (10 of 11)

- CNTs are a cylindrical form of elemental carbon: The walls of the cylinders are one atom thick.
- CNTs can act like switches, opening and closing to store bits.
- Once "set" the CNT stays in place until a release voltage is applied.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

7.10 The Future of Data Storage (11 of 11)

- Memristors are electronic components that combine the properties of a resistor with memory.
- Resistance to current flow can be controlled so that states of "high" and "low" store data bits.
- Like CNTs, memristor memories are non-volatile, holding their state until certain threshold voltages are applied.
- These non-volatile memories promise enormous energy savings and increased data access speeds in the very near future.

Conclusion (1 of 3)

- I/O systems are critical to the overall performance of a computer system.
- Amdahl's Law quantifies this assertion.
- I/O systems consist of memory blocks, cabling, control circuitry, interfaces, and media.
- I/O control methods include programmed I/O, interrupt-based I/O, DMA, and channel I/O.
- Buses require control lines, a clock, and data lines. Timing diagrams specify operational details.

Conclusion (2 of 3)

- Magnetic disk is the principal form of durable storage.
- Disk performance metrics include seek time, rotational delay, and reliability estimates.
- Enterprise SSDs save energy and provide improved data access for government and industry.
- Optical disks provide long-term storage for large amounts of data, although access is slow.
- Magnetic tape is also an archival medium sill widely used.

Conclusion (3 of 3)

- RAID gives disk systems improved performance and reliability. RAID 3 and RAID 5 are the most common.
- RAID 6 and RAID DP protect against dual disk failure, but RAID DP offers better performance.
- Any one of several new technologies including biological, holographic, CNT, memristor, or mechanical may someday replace magnetic disks.
- The hardest part of data storage may be in locating the data after it's stored.