This is the second lecture of Chapter 7

Chapter 7 Input/Output Systems (B)

THE ESSENTIALS OF Computer Organization and Architecture FIFTH EDITION

> Linda Null Julia Lobur

Inna Lobur

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

Quick review of last lecture

- Amdahl's Law
 - Speedup vs Increase
 - Examples
- I/O Architectures
 - I/O subsystems
 - I/O modules and device adaptors
 - I/O configuration
 - I/O control methods
 - Programmed I/O,
 - Interrupt-Driven I/O
 - Memory-Mapped I/O
 - Direct Memory Access (DMA)

$$S = \frac{1}{(1-f) + (f/k)}$$

7.4 I/O Architectures (9 of 16)

- Very large systems employ channel I/O.
- Channel I/O consists of one or more I/O processors (IOPs) that control various channel paths.
- Slower devices such as terminals and printers are combined (*multiplexed*) into a single faster channel.
- On IBM mainframes, multiplexed channels are called *multiplexor channels*, the faster ones are called selector channels.

7.4 I/O Architectures (10 of 16)

- Channel I/O is distinguished from DMA by the intelligence of the IOPs.
- The IOP negotiates protocols, issues device commands, translates storage coding to memory coding, and can transfer entire files or groups of files independent of the host CPU.
- The host has only to create the program instructions for the I/O operation and tell the IOP where to find them.

7.4 I/O Architectures (11 of 16) A channel I/O configuration

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

7.4 I/O Architectures (12 of 16)

- Character I/O devices process one byte (or character) at a time.
 - Examples include modems, keyboards, and mice.
 - Keyboards are usually connected through an interruptdriven I/O system.
- Block I/O devices handle bytes in groups.
 - Most mass storage devices (disk and tape) are block
 I/O devices.
 - Block I/O systems are most efficiently connected through DMA or channel I/O.

7.4 I/O Architectures (13 of 16)

- I/O buses, unlike memory buses, operate asynchronously. Requests for bus access must be arbitrated among the devices involved.
- Bus control lines activate the devices when they are needed, raise signals when errors have occurred, and reset devices when necessary.
- The number of data lines is the *width* of the bus.
- A bus clock coordinates activities and provides bit cell boundaries.

7.4 I/O Architectures (14 of 16) A generic DMA configuration showing how the DMA circuit connects to a data bus

High-Level View of a System Bus

DMA Configuration Showing Separate Address, Data, and Control Lines

7.4 I/O Architectures (15 of 16) How a bus connects to a disk drive

A Disk Controller Interface with Connections to the I/O Bus

7.4 I/O Architectures (16 of 16) Timing diagrams define bus operation in detail.

Time	Salient bus signal	Meaning		
to	Assert write	Bus is needed for writing (not reading)		
to	Assert address	Indicates where bytes will be written		
t ₁	Assert request	Request write to address on address lines		
t ₂	Assert ready	Acknowledges write request, bytes placed on data lines		
t ₃ -t ₇	Data lines	Write data (requires several cycles)		
t ₈	Lower ready	Release bus		

LLC an Ascend Learning Company www.jblearning.com

7.5 Data Transmission Modes (1 of 2)

- Bytes can be conveyed from one point to another by sending their encoding signals simultaneously using *parallel data transmission* or by sending them one bit at a time in *serial data transmission*.
 - Parallel data transmission for a printer resembles the signal protocol of a memory bus:

arning, LLC an Ascend Learning Company www.jblearning.com

7.5 Data Transmission Modes (2 of 2)

- In parallel data transmission, the interface requires one conductor for each bit.
- Parallel cables are fatter than serial cables.
- Compared with parallel data interfaces, serial communications interfaces:
 - Require fewer conductors.
 - Are less susceptible to attenuation.
 - Can transmit data farther and faster.
- Serial communications interfaces are suitable for timesensitive (*isochronous*) data such as voice and video.

7.6 Disk Technology

- Magnetic disks offer large amounts of durable storage that can be accessed quickly.
- Disk drives are called *random* (or *direct*) *access storage devices*, because blocks of data can be accessed according to their location on the disk.
 - This term was coined when all other durable storage (e.g., tape) was sequential.
- Magnetic disk organization is shown on the following slide.

7.6.1 Rigid Disk Drives (1 of 6)

 Disk tracks are numbered from the outside edge, starting with zero.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company www.jblearning.com

7.6.1 Rigid Disk Drives (2 of 6)

- Hard disk platters are mounted on spindles.
- Read/write heads are mounted on a comb that swings radially to read the disk.

7.6.1 Rigid Disk Drives (3 of 6)

- The rotating disk forms a logical cylinder beneath the read/write heads.
- Data blocks are addressed by their cylinder, surface, and sector.

7.6.1 Rigid Disk Drives (4 of 6)

- There are a number of electromechanical properties of hard disk drives that determine how fast its data can be accessed.
- *Seek time* is the time that it takes for a disk arm to move into position over the desired cylinder.
- **Rotational delay** is the time that it takes for the desired sector to move into position beneath the read/write head.
- Seek time + rotational delay = access time.

7.6.1 Rigid Disk Drives (5 of 6)

- **Transfer rate** gives us the rate at which data can be read from the disk.
- Average latency is a function of the rotational speed:

- *Mean Time To Failure* (*MTTF*) is a statisticallydetermined value often calculated experimentally.
 - It usually doesn't tell us much about the actual expected life of the disk. Design life is usually more realistic.

Figure 7.15 in the text shows a sample disk specification.

CONFIGURATION:		RELIABILITY AND MAINTENANCE:		
Formatted capacity, TB	3	MTTF	1,000,000 hours	
Integrated controller	SATA	Start/stop cycles	50,000	
Encoding method	EPRML	Design life	5 years (minimum)	
Buffer size	32MB	Data errors		
Platters	8	(nonrecoverable)	<1 per 10 ¹⁵ bits read	
Data surfaces	16	PERFORMANCE:		
Tracks per surface	16,383	Seek times		
Track density	190,000tpi	Track to track		
Recording density	1,462Kbpi	Read	0.3ms	
Bytes per sector	512	Write	0.5ms	
Sectors per Track	63	Average		
PHYSICAL:		Read	4.5ms	
Height	26.1mm	Write	5.0ms	
Length	147.0mm	Average latency	4.17ms	
Width	101.6mm	Rotational speed		
Weight	720g	(+/-0.20%)	7,200rpm	
Temperature (°C)		Data transfer rate:		
Operating	5°C to 55°C	From disk	1.2MB/sec	
Nonoperating/storage	-40°C to 71°C	To disk	3GB/sec	
Relative humidity	5% to 95%	Start time		
Acoustic noise	20dBA, idle	(0 to drive ready)	9 sec	