
Chapter 7

Input/Output
Systems (A)

This is the first

lecture of

Chapter 7

Objectives

• Understand how I/O systems work, including I/O
methods and architectures.

• Become familiar with storage media, and the
differences in their respective formats.

• Understand how RAID improves disk performance
and reliability, and which RAID systems are most
useful today.

• Be familiar with emerging data storage
technologies and the barriers that remain to be
overcome.

7.1 Introduction

• Data storage and retrieval is one of the primary
functions of computer systems.
– One could easily make the argument that computers

are more useful to us as data storage and retrieval
devices than they are as computational machines.

• All computers have I/O devices connected to them,
and to achieve good performance I/O should be
kept to a minimum!

• In studying I/O, we seek to understand the different
types of I/O devices as well as how they work.

7.2 I/O and Performance

• Sluggish I/O throughput can have a ripple effect,
dragging down overall system performance.
– This is especially true when virtual memory is involved.

• The fastest processor in the world is of little use if it
spends most of its time waiting for data.

• If we really understand what’s happening in a
computer system we can make the best possible
use of its resources.

7.3 Amdahl’s Law (1 of 3)

• The overall performance of a system is a result of the
interaction of all of its components.

• System performance is most effectively improved when the
performance of the most heavily used components is
improved.

• This idea is quantified by Amdahl’s Law:

• S is the overall speedup;

• f is the fraction of work performed

by a faster component; and

• k is the speedup of the faster

component.

Speedup vs Increase

7.3 Amdahl’s Law (2 of 3)

• Amdahl’s Law gives us a handy way to estimate the
performance improvement we can expect when we
upgrade a system component.

• On a large system, suppose we can upgrade a CPU to
make it 50% faster for $10,000 or upgrade its disk drives
for $7,000 to make them 150% faster.
– K = 1.5 for CPU and K = 2.5 for Disk

• Processes spend 70% of their time running in the CPU and
30% of their time waiting for disk service.
– f = 0.7 for CPU and f = 0.3 for Disk

• An upgrade of which component would offer the greater
benefit for the lesser cost?

7.3 Amdahl’s Law (3 of 3)

• The processor option offers a 30% speedup:

• And the disk drive option gives a 22% speedup:

• Each 1% of improvement for the processor costs
$333 (=10,000/30), and for the disk a 1%
improvement costs $318 (=7,000/22).

Should price/performance be your only concern?

7.4 I/O Architectures (1 of 16)

• We define input/output as a subsystem of components
that moves coded data between external devices and a
host system.

• I/O subsystems include:
– Blocks of main memory that are devoted to I/O functions.

– Buses that move data into and out of the system.

– Control modules in the host and in peripheral devices

– Interfaces to external components such as keyboards and
disks.

– Cabling or communications links between the host system
and its peripherals.

7.4 I/O Architectures (2 of 16)
A model I/O configuration

7.4 I/O Architectures (3 of 16)

• I/O can be controlled in five general ways.
– Programmed I/O reserves a register for each I/O

device. Each register is continually polled to detect
data arrival.

– Interrupt-Driven I/O allows the CPU to do other things
until I/O is requested.

– Memory-Mapped I/O shares memory address space
between I/O devices and program memory.

– Direct Memory Access (DMA) offloads I/O processing
to a special-purpose chip that takes care of the details.

– Channel I/O uses dedicated I/O processors.

7.4 I/O Architectures (4 of 16)

– This is an idealized I/O subsystem that uses interrupts.

– Each device connects its interrupt line to the interrupt
controller.

The controller

signals the

CPU when

any of the

interrupt lines

are asserted.

7.4 I/O Architectures (5 of 16)

• Recall from Chapter 4 that in a system that uses
interrupts, the status of the interrupt signal is
checked at the top of the fetch-decode-execute cycle.

• The particular code that is executed whenever an
interrupt occurs is determined by a set of addresses
called interrupt vectors that are stored in low
memory.

• The system state is saved before the interrupt service
routine is executed and is restored afterward.

• We provide a flowchart on the next slide.

7.4 I/O Architectures
(6 of 16)

7.4 I/O Architectures (7 of 16)

• In memory-mapped I/O devices and main memory
share the same address space.
– Each I/O device has its own reserved block of memory.

– Memory-mapped I/O therefore looks just like a
memory access from the point of view of the CPU.

– Thus the same instructions to move data to and from
both I/O and memory, greatly simplifying system
design.

• In small systems the low-level details of the data
transfers are offloaded to the I/O controllers built
into the I/O devices.

7.4 I/O Architectures (8 of 16)

• This is a DMA
configuration.

• Notice that the DMA
and the CPU share
the bus.

• The DMA runs at a
higher priority and
steals memory cycles
from the CPU.

Programmed I/O
Flowchart for a Disk

Transfer

If the disk is not ready for read or write

then the process loops back and checks

the status continuously until the disk is

ready. This is referred as a busy-wait.

Interrupt Driven I/O
Flowchart for a Disk

Transfer

DMA Flowchart for
a Disk Transfer

