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Objectives

• Understand how I/O systems work, including I/O 
methods and architectures.

• Become familiar with storage media, and the 
differences in their respective formats.

• Understand how RAID improves disk performance 
and reliability, and which RAID systems are most 
useful today.

• Be familiar with emerging data storage 
technologies and the barriers that remain to be 
overcome.



7.1 Introduction

• Data storage and retrieval is one of the primary 
functions of computer systems. 
– One could easily make the argument that computers 

are more useful to us as data storage and retrieval 
devices than they are as computational machines.

• All computers have I/O devices connected to them, 
and to achieve good performance I/O should be 
kept to a minimum!

• In studying I/O, we seek to understand the different 
types of I/O devices as well as how they work.



7.2 I/O and Performance

• Sluggish I/O throughput can have a ripple effect, 
dragging down overall system performance.
– This is especially true when virtual memory is involved.

• The fastest processor in the world is of little use if it 
spends most of its time waiting for data.

• If we really understand what’s happening in a 
computer system we can make the best possible 
use of its resources.



7.3 Amdahl’s Law (1 of 3)

• The overall performance of a system is a result of the 
interaction of all of its components.

• System performance is most effectively improved when the 
performance of the most heavily used components is 
improved. 

• This idea is quantified by Amdahl’s Law:

• S is the overall speedup; 

• f is the fraction of work performed 

by a faster component; and 

• k is the speedup of the faster 

component.



Speedup vs Increase



7.3 Amdahl’s Law (2 of 3)

• Amdahl’s Law gives us a handy way to estimate the 
performance improvement we can expect when we 
upgrade a system component.

• On a large system, suppose we can upgrade a CPU to 
make it 50% faster for $10,000 or upgrade its disk drives 
for $7,000 to make them 150% faster. 
– K = 1.5 for CPU and K = 2.5 for Disk

• Processes spend 70% of their time running in the CPU and 
30% of their time waiting for disk service.
– f = 0.7 for CPU and f = 0.3 for Disk 

• An upgrade of which component would offer the greater 
benefit for the lesser cost?



7.3 Amdahl’s Law (3 of 3)

• The processor option offers a 30% speedup:

• And the disk drive option gives a 22% speedup:

• Each 1% of improvement for the processor costs 
$333 (=10,000/30), and for the disk a 1% 
improvement costs $318 (=7,000/22).

Should price/performance be your only concern? 



7.4 I/O Architectures (1 of 16)

• We define input/output as a subsystem of components 
that moves coded data between external devices and a 
host system.

• I/O subsystems include:
– Blocks of main memory that are devoted to I/O functions.

– Buses that move data into and out of the system. 

– Control modules in the host and in peripheral devices

– Interfaces to external components such as keyboards and 
disks.

– Cabling or communications links between the host system 
and its peripherals.



7.4 I/O Architectures (2 of 16)
A model I/O configuration



7.4 I/O Architectures (3 of 16)

• I/O can be controlled in five general ways.
– Programmed I/O reserves a register for each I/O 

device. Each register is continually polled to detect 
data arrival.

– Interrupt-Driven I/O allows the CPU to do other things 
until I/O is requested.

– Memory-Mapped I/O shares memory address space 
between I/O devices and program memory.

– Direct Memory Access (DMA) offloads I/O processing 
to a special-purpose chip that takes care of the details.

– Channel I/O uses dedicated I/O processors.



7.4 I/O Architectures (4 of 16)

– This is an idealized I/O subsystem that uses interrupts.

– Each device connects its interrupt line to the interrupt 
controller.

The controller 

signals the 

CPU when 

any of the 

interrupt lines 

are asserted.



7.4 I/O Architectures (5 of 16)

• Recall from Chapter 4 that in a system that uses 
interrupts, the status of the interrupt signal is 
checked at the top of the fetch-decode-execute cycle.

• The particular code that is executed whenever an 
interrupt occurs is determined by a set of addresses 
called interrupt vectors that are stored in low 
memory.

• The system state is saved before the interrupt service 
routine is executed and is restored afterward.

• We provide a flowchart on the next slide.



7.4 I/O Architectures 
(6 of 16)  



7.4 I/O Architectures (7 of 16)

• In memory-mapped I/O devices and main memory 
share the same address space. 
– Each I/O device has its own reserved block of memory. 

– Memory-mapped I/O therefore looks just like a 
memory access from the point of view of the CPU. 

– Thus the same instructions to move data to and from 
both I/O and memory, greatly simplifying system 
design.

• In small systems the low-level details of the data 
transfers are offloaded to the I/O controllers built 
into the I/O devices.



7.4 I/O Architectures (8 of 16)

• This is a DMA 
configuration. 

• Notice that the DMA 
and the CPU share 
the bus.  

• The DMA runs at a 
higher priority and 
steals memory cycles 
from the CPU.



Programmed I/O 
Flowchart for a Disk 

Transfer

If the disk is not ready for read or write 

then the process loops back and checks 

the status continuously until the disk is 

ready. This is referred as a busy-wait.



Interrupt Driven I/O 
Flowchart for a Disk 

Transfer



DMA Flowchart for 
a Disk Transfer


