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seventh lecture 

of Chapter 6



Quick review of last lecture 

• Virtual Memory

– Paging, Virtual Page, Page Frame, Page Fault

– Virtual Address, Physical Address

– Page Table, Valid bit

– Translate Virtual Address into Physical Address



6.5 Virtual Memory (12 of 26)

• We said earlier that effective access time (EAT) takes 
all levels of memory into consideration.

• Thus, virtual memory is also a factor in the 
calculation, and we also have to consider page table 
access time.

• Suppose a main memory access takes 200ns, the 
page fault rate is 1%, and it takes 10ms to load a page 
from disk. We have:

– EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 10,396ns



6.5 Virtual Memory (13 of 26)

• Even if we had no page faults, the EAT would be 
400ns because memory is always read twice: First to 
access the page table, and second to load the data 
from memory.

• Because page tables are read constantly, it makes 
sense to keep them in a special cache called a 
translation look-aside buffer (TLB).

• TLBs are a special associative cache that stores the 
mapping of virtual pages to physical pages.

The next slide shows address lookup steps  when a TLB is involved.



6.5 Virtual Memory (14 of 26)

TLB lookup process
• Extract the page number from the virtual 

address.
• Extract the offset from the virtual address.
• Search for the virtual page number in the 

TLB.
• If the (virtual page #, page frame #) pair is 

found in the TLB, add the offset to the 
physical frame number and access the 
memory location.

• If there is a TLB miss, go to the page table 
to get the necessary frame number. If the 
page is in memory, use the corresponding 
frame number and add the offset to yield 
the physical address.

• If the page is not in main memory, 
generate a page fault and restart the 
access when the page fault is complete.



6.5 Virtual Memory (15 of 26)

Putting it all together: The TLB, Page Table, and Main Memory



6.5 Virtual Memory (16 of 26)

• Another approach to virtual memory is the use of 
segmentation.

• Instead of dividing memory into equal-sized pages, virtual 
address space is divided into variable-length segments, often 
under the control of the programmer.
– Segmentation can facilitate sharing code or data and protection

• A segment table is used, instead of page table.
– It contains the segment’s memory location and a bounds limit 

that indicates its size.  

• When a new segment is needed, the operating system searches 
for a location in memory large enough to hold the segment that 
is retrieved from disk.



6.5 Virtual Memory (17 of 26)

• Both paging and segmentation can cause fragmentation.

• Paging is subject to internal fragmentation because a 

process may not need the entire range of addresses 

contained within the page. Thus, there may be many 

pages containing unused fragments of memory. 

• Segmentation is subject to external fragmentation, which 

occurs when contiguous chunks of memory become 

broken up as segments are allocated and deallocated over 

time.



Fragmentation

External fragmentation

• Unused space in between segments 

Development of external fragmentation ((a)-(d)) 

Removal of external

fragmentation by

compaction((e)) 

Internal fragmentation

• Unused space within a page



6.5 Virtual Memory (26 of 26)

• Large page tables are cumbersome and slow, but with its 
uniform memory mapping, page operations are fast.  
Segmentation allows fast access to the segment table, but 
segment loading is labor-intensive.

• Paging and segmentation can be combined to take 
advantage of the best features of both by assigning fixed-
size pages within variable-sized segments.

• Each segment has a page table. This means that a memory 
address will have three fields, one for the segment, 
another for the page, and a third for the offset.



6.6 A Real-World Example (1 of 2)

• The Pentium architecture supports both paging and 
segmentation, and they can be used in various 
combinations including unpaged unsegmented, 
segmented unpaged, and unsegmented paged.

• The processor supports two levels of cache (L1 and L2), 
both having a block size of 32 bytes.

• The L1 cache is next to the processor, and the L2 cache 
sits between the processor and memory.

• The L1 cache is in two parts: and instruction cache (I-
cache) and a data cache (D-cache).

The next slide shows this organization schematically. 



6.6 A Real-World Example (2 of 2)



Conclusion (1 of 2)

• Computer memory is organized in a hierarchy, with the 
smallest, fastest memory at the top and the largest, 
slowest memory at the bottom.

• Cache memory gives faster access to main memory, while 
virtual memory uses disk storage to give the illusion of 
having a large main memory.

• Cache maps blocks of main memory to blocks of cache 
memory. Virtual memory maps virtual pages to page 
frames.

• There are three general types of cache: direct mapped, 
fully associative, and set associative.



Conclusion (2 of 2)

• With fully associative and set associative cache, as 
well as with virtual memory, replacement policies 
must be established.

• Replacement policies include LRU, FIFO, or Random. 
These policies must also take into account what to do 
with dirty blocks.

• All virtual memory must deal with fragmentation, 
internal for paged memory, external for segmented 
memory.



Review of Essential Terms and Concepts

• Strongly encourage you to study Review of 
Essential Terms and Concepts. 

– I will not collect and grade them

– You can discuss the answers to this review questions 
on our Course Questions Forum on Canvas.


