
Chapter 6

Memory (D)

This is the

fourth lecture

of Chapter 6

Quick review of last lecture

• Cache Placement

– Direct Mapping

• Memory Address format

• Memory_size = Block_size * #_of_blocks

– Fully associative mapping

• Memory Address format

• Cache replacement

– N-way set associative mapping

T M B

N

6.4 Cache Memory (32 of 45)

• With fully associative and set associative cache, a
replacement policy is invoked when it becomes
necessary to evict a block from cache.

• An optimal replacement policy would be able to look
into the future to see which blocks won’t be needed
for the longest period of time.

• Although it is impossible to implement an optimal
replacement algorithm, it is instructive to use it as a
benchmark for assessing the efficiency of any other
scheme we come up with.

6.4 Cache Memory (33 of 45)

• The replacement policy that we choose depends
upon the locality that we are trying to optimize—
usually, we are interested in temporal locality.

• A least recently used (LRU) algorithm keeps track of
the last time that a block was assessed and evicts the
block that has been unused for the longest period of
time.

• The disadvantage of this approach is its complexity:
LRU has to maintain an access history for each block,
which ultimately slows down the cache.

6.4 Cache Memory (34 of 45)

• First-in, first-out (FIFO) is a popular cache
replacement policy.

• In FIFO, the block that has been in the cache the
longest, regardless of when it was last used.

• A random replacement policy does what its name
implies: It picks a block at random and replaces it
with a new block.

• Random replacement can certainly evict a block that
will be needed often or needed soon, but it never
thrashes.

Cache Replacement

Slot 0 1 2 4 2 3 7 2 1 3 1 Hit Rate

a 0 0 0 4 4 4 7 7 7 3 3

b 1 1 1 1 3 3 3 1 1 1 3/11

c 2 2 2 2 2 2 2 2 2

Misses * * * * * * * *

Slot 0 1 2 4 2 3 7 2 1 3 1 Hit Rate

a 0 0 0 4 4 4 4 2 2 2 2

b 1 1 1 1 3 3 3 1 1 1 2/11

c 2 2 2 2 7 7 7 3 3

Misses * * * * * * * * *

LRU

FIFO

Block tracing experiments

block trace

block trace

6.4 Cache Memory (35 of 45)

• The performance of hierarchical memory is measured
by its effective access time (EAT).

• EAT is a weighted average that takes into account the
hit ratio and relative access times of successive levels
of memory.

• The EAT for a two-level memory is given by:

EAT = H  AccessC + (1 – H)  AccessMM
– where H is the cache hit rate and AccessC and

AccessMM are the access times for cache and main
memory, respectively.

6.4 Cache Memory (36 of 45)

• For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

• Suppose access to cache and main memory occurs
concurrently (the accesses overlap).

• The EAT is:

0.99(10ns) + 0.01(200ns) = 9.9ns + 2ns = 11ns

6.4 Cache Memory (37 of 45)

• For example, consider a system with a main memory
access time of 200ns supported by a cache having a
10ns access time and a hit rate of 99%.

• If the accesses do not overlap, the EAT is:

0.99(10ns) + 0.01(10ns + 200ns)

= 9.9ns + 2.01ns = 12ns

• This equation for determining the effective access
time can be extended to any number of memory
levels, as we will see in later sections.

6.4 Cache Memory (38 of 45)

• Caching is depends upon programs exhibiting good
locality.

– Some object-oriented programs have poor locality
owing to their complex, dynamic structures.

– Arrays stored in column-major rather than row-major
order can be problematic for certain cache
organizations.

• With poor locality, caching can actually cause
performance degradation rather than performance
improvement.

6.4 Cache Memory (39 of 45)

• Cache replacement policies must take into account
dirty blocks, those blocks that have been updated
while they were in the cache.

• Dirty blocks must be written back to memory. A write
policy determines how this will be done.

• There are two types of write policies, write through
and write back.

• Write through updates cache and main memory
simultaneously on every write.

• Write back (also called copyback) updates memory
only when the block is selected for replacement.

6.4 Cache Memory (40 of 45)

• The disadvantage of write through is that memory

must be updated with each cache write, which slows

down the access time on updates. This slowdown is

usually negligible, because the majority of accesses

tend to be reads, not writes.

• The advantage of write back is that memory traffic is

minimized, but its disadvantage is that memory does

not always agree with the value in cache, causing

problems in systems with many concurrent users.

Cache Read and Write Policies

6.4 Cache Memory (41 of 45)

• The cache we have been discussing is called a unified
or integrated cache where both instructions and data
are cached.

• Many modern systems employ separate caches for
data and instructions.
– This is called a Harvard cache.

• The separation of data from instructions provides
better locality, at the cost of greater complexity.
– Simply making the cache larger provides about the same

performance improvement without the complexity.

6.4 Cache Memory (42 of 45)

• Cache performance can also be improved by adding a
small associative cache to hold blocks that have been
evicted recently.

– This is called a victim cache.

• A trace cache is a variant of an instruction cache that
holds decoded instructions for program branches,
giving the illusion that noncontiguous instructions are
really contiguous.

6.4 Cache Memory (43 of 45)

• Most of today’s small systems employ multilevel
cache hierarchies.

• The levels of cache form their own small memory
hierarchy.

• Level 1 cache (8KB to 64KB) is situated on the
processor itself.
– Access time is typically about 4ns.

• Level 2 cache (64KB to 2MB) may be on the
motherboard, or on an expansion card.
– Access time is usually around 15–20ns.

6.4 Cache Memory (44 of 45)

• In systems that employ three levels of cache, the
Level 2 cache is placed on the same die as the CPU
(reducing access time to about 10ns).

• Accordingly, the Level 3 cache (2MB to 256MB) refers
to cache that is situated between the processor and
main memory.

• Once the number of cache levels is determined, the
next thing to consider is whether data (or
instructions) can exist in more than one cache level.

6.4 Cache Memory (45 of 45)

• If the cache system used an inclusive cache, the same
data may be present at multiple levels of cache.

• Strictly inclusive caches guarantee that all data in a
smaller cache also exists at the next higher level.

• Exclusive caches permit only one copy of the data.

• The tradeoffs in choosing one over the other involve
weighing the variables of access time, memory size,
and circuit complexity.

Next Class

• Next class will give examples to show how to
compute

– Hit rate

– Miss rate

– EAT

For a given program (sequence of instructions).

