This Is the
third lecture of
Chapter 6

A B N g e ———

Com‘pute‘ ”
Organization

rchit cture\ ,

Linda Null
Julia Lobur

L]

- e) — e 7
T FerEy == g gosgy

4 -

*

n ‘/» h ‘6"‘4. ‘ “ ¢
s Ba’ﬁettd_earnlng? LLCan Ascend Learning Company
! g
» © www.jblearning.com
‘ v ot » + . %

Y

e

Quick review of last lecture

= T M S Bl
e Cache Placement

Tag Block Offset
— Di reCt IVI a p pi n g Bits in main memory address e
- N =

e Memory Address format

e Memory_size = Block_size * # of blocks
— Fully associative mapping

Tag Offset

e Memory Address format
e Cache replacement

— N-way set associative mapping

Tag Set Offset

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (21 of 45)

e Example 6.5: Suppose we are using 2-way set associative
mapping with a byte-addressable main memory of 214
bytes and a cache with 16 blocks, where each block
contains 8 bytes.

— Cache has a total of 16 blocks, and each set has 2 blocks,
then there are 8 sets in cache.

— Thus, the set field is 3 bits, the offset field is 3 bits, and the
tag field is 8 bits.

8 bits 3 bits 3 bits

Tag Set Offset

A

14 bits >

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (22 of 45)

e Example 6.6: Suppose a byte-addressable memory contains
1MB and cache consists of 32 blocks, where each block
contains 16 bytes. Using direct mapping, fully associative
mapping, and a 4-way set associative mapping, determine
where the main memory address 0x326A0 maps to in
cache.

— First note that a main memory address has 20 bits. The main
memory address for direct mapped cache is shown below.

11 bits 5 bits 4 bits
Tag Block | Offset

-« 20 bits >

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (23 of 45)

e Example 6.6:

— If we represent our main memory address 0x326A0 in
binary and place the bits into the format, we get:

11 bits S5bits 4 bits
00110010011 01010 | 0000

« 20 bits -

— So this address maps to cache block 01010 (or block
10).

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (24 of 45)

e Example 6.6: Cont’d.

— If we are using fully associative cache, we have:

16 bits 4 bits
Tag Offset

-« 20 bits >

— But because it is fully associative, it could map
anywhere.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (25 of 45)

e Example 6.6: Cont’d.

— If we are using 4-way set associative cache, we have:

13 bits 3 bits 4 bits
Tag Set Offset

-« 20 bits =

— If we divide the main memory address into these
fields, we get:

13 bits 3bits 4 biis
0011001001101 010 0000

-+ 20 bits o

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (26 of 45)

e Example 6.7: A byte-addressable computer with an 8-
block cache of 4 bytes each. Assuming each memory
address has 8 bits and cache initially is empty.

e Trace memory accesses: 0x01, 0x04, 0x09, 0x05, 0x14,
0x21, and 0x01 for each mapping approach.

e The address format for direct mapped cache is:

3 bits 3 bits 2 bits
Tag Block Offset
- 8 bits -

Our trace is on the next slide.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

3 bits 3 hits 2 bits

Address Binary Address Hit or Tag Block Offset
Reference | (divided into fields) | Miss -
<« 8bits —»
0x01 000 000 01 Miss
Cache Tag
0x04 000 001 00 Miss
Block 0
0x09 000 010 01 Miss
Block 1
0x05 000 001 01 Hit Block 2
Ox14 000 101 00 Miss Block 3
0x21 001 000 01 Miss Block 4
Block 5
O0x01 000 000 01 Miss
Block 6
Block 7

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (27 of 45)

Address Binary Address Hit or
Reference | (divided into fields) | Miss Comments

0x01 000 000 01 Miss If we check cache block 000 for the tag 000, we find that it is not there.
So we copy the data from addresses 0x00, 0x01, 0x02, and 0x03 into
cache block 0 and store the tag 000 for that block.

Ox04 000 001 00 Miss | We check cache block 001 for the tag 000, and on finding it missing, we
copy the data from addresses 0x04, 0x05, 0x06, and 0x07 into cache
block 1 and store the tag 000 for that block.

Ox09 000 010 01 Miss | A check of cache block 010 (2) for the tag 000 reveals a miss, so we
copy the data from addresses 0x08, 0x09, 0x0A, and 0x0B into cache
block 2 and store the tag 000 for that block.

Ox05 000 001 O1 Hit We check cache block 001 for the tag 000, and we find it. We then use
the offset value 01 to get the exact byte we need.
Ox14 000 101 00 Miss We check cache block 101 (5) for the tag 000, but it is not present. We

copy addresses 0x14, 0x15, 0x16, and 0x17 to cache block 5 and store
the tag 000 with that block.

0x21 001 000 01 Miss We check cache block 000 for the tag 001; we find tag 000 (which
means this is not the correct block), so we overwrite the existing
contents of this cache block by copying the data from addresses 0x20,
0x21, 0x22, and 0x23 into cache block 0 and storing the tag 001.

0x01 000 000 01 Miss | Although we have already fetched the block that contains address 0x01
once, it was overwritten when we fetched the block containing address
0x21 (if we look at block 0 in cache, we can see that its tag is 001, not 000).
Therefore, we must overwrite the contents of block 0 in cache with the data
from addresses 0x00, 0x01, 0x02, and 0x03, and store a tag of 000.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (28 of 45)

e Example 6.7: Cont’d. A byte-addressable computer with
an 8-block cache of 4 bytes each, trace memory accesses:
Ox01, 0x04, 0x09, 0x05, 0x14, 0x21, and 0x01 for each
mapping approach.

e The address format for fully associative cache is:

6 bits 4 bits
Tag Offset

-« g bits >

Our trace Is on the next slide.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6 bits 4 bits

Tag Offset
=2 B bits >
Address Binary Address Hit or
Reference | (divided into fields) | Miss Cache Tag
0x01 000000 01 Miss
Block 0
0x04 000001 00 Miss
Block 1
0x09 000010 01 Miss Block 2
0x05 000001 01 Hit Block 3
Block 4
Ox14 000101 00 Miss
Block 5
Ox21 001000 01 Miss
Block 6
0x01 000000 01 Hit
Block 7

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (29 of 45)

Address Binary Address Hit or
Reference | (divided into fields) | Miss Comments

0x01 000000 01 Miss We search all of cache for the tag 000000, and we don't find it. So we
copy the data from addresses 0x00, 0x01, 0x02, and 0x03 into cache
block 0 and store the tag 000000 for that block.

0x04 000001 00 Miss | We search all of cache for the tag 000001, and on finding it missing, we

copy the data from addresses 0x04, 0x05, 0x06, and 0x07 into cache
block 1 and store the tag 000001 for that block.

0x09 000010 01 Miss | We don't find the tag 000010 in cache, so we copy the data from
addresses 0x08, 0x09, 0x0A, and 0x0B into cache block 2 and store the
tag 000010 for that block.

0x05 000001 01 Hit We search all of cache for the tag 000001, and we find it stored with
cache block 1. We then use the offset value 01 to get the exact byte we
need.

Ox14 000101 00 Miss | We search all of cache for the tag 000101, but it is not present. We copy
addresses Ox14, 0x15, 0x16, and 0x17 to cache block 3 and store the
tag 000101 with that block.

0x21 001000 01 Miss | We search all of cache for the tag 001000; we don’t find it, so we copy
the data from addresses 0x20, 0x21, 0x22, and 0x23 into cache block 4
and store the tag 001000.

0x01 000000 01 Hit We search cache for the tag 000000 and find it with cache block 0. We
use the offset of 1 to find the data we want.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (30 of 45)

e EXAMPLE 6.7: Cont’d. A byte-addressable computer with
an 8-block cache of 4 bytes each, trace memory accesses:
Ox01, 0x04, 0x09, 0x05, 0x14, 0x21, and 0x01 for each
mapping approach.

e The address format for 2-way set-associative cache is:

4 bits 2 bits 2 bits
Tag Set Offset

-« 8 bits >

Our trace i1s on the next slide.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

Address Binary Address Hit or 4bits 2 bits 2 bits
Reference | (divided into fields) | Miss Tag Set Ofiset
Ox01 0000 00 01 Miss < 8 bits
Cache Tag
0x04 0000 01 00 Miss Block 0
Set ()
Block 1 J
0x09 0000 10 01 Miss
~ Block 2 J
Setl -
0x05 0000 01 01 Hit | Block 3 B
- — Block 4 J
0x14 0001 0100 Miss Set 2
e B
_ Block 5 J
0x21 001000 01 Miss J
Block 6
Set 3
0x01 0000 00 01 Hit Block 7 |

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

6.4 Cache Memory (31 of 45)

Address Binary Address Hit or
Reference | (divided into fields) | Miss Comments

0x01 0000 00 01 Miss | We search in set 0 of cache for a block with the tag 0000, and we find it
is not there. So we copy the data from addresses 0x00, 0x01, 0x02, and
0x03 into set 0 (so now set 0 has one used block and one free block)
and store the tag 0000 for that block. It does not matter which set we
use; for consistency, we put the data in the first set.

Ox04 0000 01 00 Miss | We search set 1 for a block with the tag 0000, and on finding it missing,
we copy the data from addresses 0x04, 0x05, 0x06, and 0xO7 into set
and store the tag 0000 for that block.

0x09 0000 10 01 Miss | We search set 2 (10) for a block with the tag 0000, but we don't find one,
s0 we copy the data from addresses 0x08, 0x09, 0x0A, and 0x0B into
set 2 and store the tag 0000 for that block.

0x05 0000 01 01 Hit We search set 1 for a block with the tag 0000, and we find it.
We then use the offset value 01 within that block to get the exact
byte we need.

Ox14 0001 01 00 Miss | We search set 1 for a block with the tag 0001, but it is not present. We
copy addresses 0x14, 0x15, 0x16, and 0x17 to set 1 and store the tag
0001 with that block. Note that set 1 is now full.

0x21 0010 00 01 Miss | We search cache set 0 for a block with the tag 0010; we don’t find it, so
we copy the data from addresses 0x20, 0x21, 0x22, and 0x23 into set 0
and store the tag 0010. Note that set 0 is now full.

0x01 0000 00 01 Hit We search cache set 0 for a block with the tag 0000, and we find it. We
use the offset of 1 within that block to find the data we want.

© Nicemonkey/Shutterstock. Copyright © 2019 by Jones & Bartlett Learning, LLC an Ascend Learning Company
www.jblearning.com

